1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
#[doc = "Register `CS` reader"]
pub type R = crate::R<CS_SPEC>;
#[doc = "Register `CS` writer"]
pub type W = crate::W<CS_SPEC>;
#[doc = "Field `EN` reader - Power on ADC and enable its clock.  
 1 - enabled. 0 - disabled."]
pub type EN_R = crate::BitReader;
#[doc = "Field `EN` writer - Power on ADC and enable its clock.  
 1 - enabled. 0 - disabled."]
pub type EN_W<'a, REG> = crate::BitWriter<'a, REG>;
#[doc = "Field `TS_EN` reader - Power on temperature sensor. 1 - enabled. 0 - disabled."]
pub type TS_EN_R = crate::BitReader;
#[doc = "Field `TS_EN` writer - Power on temperature sensor. 1 - enabled. 0 - disabled."]
pub type TS_EN_W<'a, REG> = crate::BitWriter<'a, REG>;
#[doc = "Field `START_ONCE` reader - Start a single conversion. Self-clearing. Ignored if start_many is asserted."]
pub type START_ONCE_R = crate::BitReader;
#[doc = "Field `START_ONCE` writer - Start a single conversion. Self-clearing. Ignored if start_many is asserted."]
pub type START_ONCE_W<'a, REG> = crate::BitWriter<'a, REG>;
#[doc = "Field `START_MANY` reader - Continuously perform conversions whilst this bit is 1. A new conversion will start immediately after the previous finishes."]
pub type START_MANY_R = crate::BitReader;
#[doc = "Field `START_MANY` writer - Continuously perform conversions whilst this bit is 1. A new conversion will start immediately after the previous finishes."]
pub type START_MANY_W<'a, REG> = crate::BitWriter<'a, REG>;
#[doc = "Field `READY` reader - 1 if the ADC is ready to start a new conversion. Implies any previous conversion has completed.  
 0 whilst conversion in progress."]
pub type READY_R = crate::BitReader;
#[doc = "Field `ERR` reader - The most recent ADC conversion encountered an error; result is undefined or noisy."]
pub type ERR_R = crate::BitReader;
#[doc = "Field `ERR_STICKY` reader - Some past ADC conversion encountered an error. Write 1 to clear."]
pub type ERR_STICKY_R = crate::BitReader;
#[doc = "Field `ERR_STICKY` writer - Some past ADC conversion encountered an error. Write 1 to clear."]
pub type ERR_STICKY_W<'a, REG> = crate::BitWriter1C<'a, REG>;
#[doc = "Field `AINSEL` reader - Select analog mux input. Updated automatically in round-robin mode."]
pub type AINSEL_R = crate::FieldReader;
#[doc = "Field `AINSEL` writer - Select analog mux input. Updated automatically in round-robin mode."]
pub type AINSEL_W<'a, REG> = crate::FieldWriter<'a, REG, 3>;
#[doc = "Field `RROBIN` reader - Round-robin sampling. 1 bit per channel. Set all bits to 0 to disable.  
 Otherwise, the ADC will cycle through each enabled channel in a round-robin fashion.  
 The first channel to be sampled will be the one currently indicated by AINSEL.  
 AINSEL will be updated after each conversion with the newly-selected channel."]
pub type RROBIN_R = crate::FieldReader;
#[doc = "Field `RROBIN` writer - Round-robin sampling. 1 bit per channel. Set all bits to 0 to disable.  
 Otherwise, the ADC will cycle through each enabled channel in a round-robin fashion.  
 The first channel to be sampled will be the one currently indicated by AINSEL.  
 AINSEL will be updated after each conversion with the newly-selected channel."]
pub type RROBIN_W<'a, REG> = crate::FieldWriter<'a, REG, 5>;
impl R {
    #[doc = "Bit 0 - Power on ADC and enable its clock.  
 1 - enabled. 0 - disabled."]
    #[inline(always)]
    pub fn en(&self) -> EN_R {
        EN_R::new((self.bits & 1) != 0)
    }
    #[doc = "Bit 1 - Power on temperature sensor. 1 - enabled. 0 - disabled."]
    #[inline(always)]
    pub fn ts_en(&self) -> TS_EN_R {
        TS_EN_R::new(((self.bits >> 1) & 1) != 0)
    }
    #[doc = "Bit 2 - Start a single conversion. Self-clearing. Ignored if start_many is asserted."]
    #[inline(always)]
    pub fn start_once(&self) -> START_ONCE_R {
        START_ONCE_R::new(((self.bits >> 2) & 1) != 0)
    }
    #[doc = "Bit 3 - Continuously perform conversions whilst this bit is 1. A new conversion will start immediately after the previous finishes."]
    #[inline(always)]
    pub fn start_many(&self) -> START_MANY_R {
        START_MANY_R::new(((self.bits >> 3) & 1) != 0)
    }
    #[doc = "Bit 8 - 1 if the ADC is ready to start a new conversion. Implies any previous conversion has completed.  
 0 whilst conversion in progress."]
    #[inline(always)]
    pub fn ready(&self) -> READY_R {
        READY_R::new(((self.bits >> 8) & 1) != 0)
    }
    #[doc = "Bit 9 - The most recent ADC conversion encountered an error; result is undefined or noisy."]
    #[inline(always)]
    pub fn err(&self) -> ERR_R {
        ERR_R::new(((self.bits >> 9) & 1) != 0)
    }
    #[doc = "Bit 10 - Some past ADC conversion encountered an error. Write 1 to clear."]
    #[inline(always)]
    pub fn err_sticky(&self) -> ERR_STICKY_R {
        ERR_STICKY_R::new(((self.bits >> 10) & 1) != 0)
    }
    #[doc = "Bits 12:14 - Select analog mux input. Updated automatically in round-robin mode."]
    #[inline(always)]
    pub fn ainsel(&self) -> AINSEL_R {
        AINSEL_R::new(((self.bits >> 12) & 7) as u8)
    }
    #[doc = "Bits 16:20 - Round-robin sampling. 1 bit per channel. Set all bits to 0 to disable.  
 Otherwise, the ADC will cycle through each enabled channel in a round-robin fashion.  
 The first channel to be sampled will be the one currently indicated by AINSEL.  
 AINSEL will be updated after each conversion with the newly-selected channel."]
    #[inline(always)]
    pub fn rrobin(&self) -> RROBIN_R {
        RROBIN_R::new(((self.bits >> 16) & 0x1f) as u8)
    }
}
impl W {
    #[doc = "Bit 0 - Power on ADC and enable its clock.  
 1 - enabled. 0 - disabled."]
    #[inline(always)]
    #[must_use]
    pub fn en(&mut self) -> EN_W<CS_SPEC> {
        EN_W::new(self, 0)
    }
    #[doc = "Bit 1 - Power on temperature sensor. 1 - enabled. 0 - disabled."]
    #[inline(always)]
    #[must_use]
    pub fn ts_en(&mut self) -> TS_EN_W<CS_SPEC> {
        TS_EN_W::new(self, 1)
    }
    #[doc = "Bit 2 - Start a single conversion. Self-clearing. Ignored if start_many is asserted."]
    #[inline(always)]
    #[must_use]
    pub fn start_once(&mut self) -> START_ONCE_W<CS_SPEC> {
        START_ONCE_W::new(self, 2)
    }
    #[doc = "Bit 3 - Continuously perform conversions whilst this bit is 1. A new conversion will start immediately after the previous finishes."]
    #[inline(always)]
    #[must_use]
    pub fn start_many(&mut self) -> START_MANY_W<CS_SPEC> {
        START_MANY_W::new(self, 3)
    }
    #[doc = "Bit 10 - Some past ADC conversion encountered an error. Write 1 to clear."]
    #[inline(always)]
    #[must_use]
    pub fn err_sticky(&mut self) -> ERR_STICKY_W<CS_SPEC> {
        ERR_STICKY_W::new(self, 10)
    }
    #[doc = "Bits 12:14 - Select analog mux input. Updated automatically in round-robin mode."]
    #[inline(always)]
    #[must_use]
    pub fn ainsel(&mut self) -> AINSEL_W<CS_SPEC> {
        AINSEL_W::new(self, 12)
    }
    #[doc = "Bits 16:20 - Round-robin sampling. 1 bit per channel. Set all bits to 0 to disable.  
 Otherwise, the ADC will cycle through each enabled channel in a round-robin fashion.  
 The first channel to be sampled will be the one currently indicated by AINSEL.  
 AINSEL will be updated after each conversion with the newly-selected channel."]
    #[inline(always)]
    #[must_use]
    pub fn rrobin(&mut self) -> RROBIN_W<CS_SPEC> {
        RROBIN_W::new(self, 16)
    }
    #[doc = r" Writes raw bits to the register."]
    #[doc = r""]
    #[doc = r" # Safety"]
    #[doc = r""]
    #[doc = r" Passing incorrect value can cause undefined behaviour. See reference manual"]
    #[inline(always)]
    pub unsafe fn bits(&mut self, bits: u32) -> &mut Self {
        self.bits = bits;
        self
    }
}
#[doc = "ADC Control and Status  

You can [`read`](crate::generic::Reg::read) this register and get [`cs::R`](R).  You can [`reset`](crate::generic::Reg::reset), [`write`](crate::generic::Reg::write), [`write_with_zero`](crate::generic::Reg::write_with_zero) this register using [`cs::W`](W). You can also [`modify`](crate::generic::Reg::modify) this register. See [API](https://docs.rs/svd2rust/#read--modify--write-api)."]
pub struct CS_SPEC;
impl crate::RegisterSpec for CS_SPEC {
    type Ux = u32;
}
#[doc = "`read()` method returns [`cs::R`](R) reader structure"]
impl crate::Readable for CS_SPEC {}
#[doc = "`write(|w| ..)` method takes [`cs::W`](W) writer structure"]
impl crate::Writable for CS_SPEC {
    const ZERO_TO_MODIFY_FIELDS_BITMAP: u32 = 0;
    const ONE_TO_MODIFY_FIELDS_BITMAP: u32 = 0x0400;
}
#[doc = "`reset()` method sets CS to value 0"]
impl crate::Resettable for CS_SPEC {
    const RESET_VALUE: u32 = 0;
}