1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
//! A generic timer queue for async executors.
use crate::linked_list::{self, Link, LinkedList};
use crate::TimeoutError;
use core::future::Future;
use core::pin::Pin;
use core::sync::atomic::{AtomicBool, AtomicUsize, Ordering};
use core::task::{Poll, Waker};
mod backend;
mod tick_type;
pub use backend::TimerQueueBackend;
pub use tick_type::TimerQueueTicks;
/// Holds a waker and at which time instant this waker shall be awoken.
struct WaitingWaker<Backend: TimerQueueBackend> {
waker: Waker,
release_at: Backend::Ticks,
was_popped: AtomicBool,
}
impl<Backend: TimerQueueBackend> Clone for WaitingWaker<Backend> {
fn clone(&self) -> Self {
Self {
waker: self.waker.clone(),
release_at: self.release_at,
was_popped: AtomicBool::new(self.was_popped.load(Ordering::Relaxed)),
}
}
}
impl<Backend: TimerQueueBackend> PartialEq for WaitingWaker<Backend> {
fn eq(&self, other: &Self) -> bool {
self.release_at == other.release_at
}
}
impl<Backend: TimerQueueBackend> PartialOrd for WaitingWaker<Backend> {
fn partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering> {
Some(self.release_at.compare(other.release_at))
}
}
/// A generic timer queue for async executors.
///
/// # Blocking
///
/// The internal priority queue uses global critical sections to manage access. This means that
/// `await`ing a delay will cause a lock of the entire system for O(n) time. In practice the lock
/// duration is ~10 clock cycles per element in the queue.
///
/// # Safety
///
/// This timer queue is based on an intrusive linked list, and by extension the links are stored
/// on the async stacks of callers. The links are deallocated on `drop` or when the wait is
/// complete.
///
/// Do not call `mem::forget` on an awaited future, or there will be dragons!
pub struct TimerQueue<Backend: TimerQueueBackend> {
queue: LinkedList<WaitingWaker<Backend>>,
initialized: AtomicBool,
}
impl<Backend: TimerQueueBackend> Default for TimerQueue<Backend> {
fn default() -> Self {
Self::new()
}
}
impl<Backend: TimerQueueBackend> TimerQueue<Backend> {
/// Make a new queue.
pub const fn new() -> Self {
Self {
queue: LinkedList::new(),
initialized: AtomicBool::new(false),
}
}
/// Forwards the `Monotonic::now()` method.
#[inline(always)]
pub fn now(&self) -> Backend::Ticks {
Backend::now()
}
/// Takes the initialized monotonic to initialize the TimerQueue.
pub fn initialize(&self, backend: Backend) {
self.initialized.store(true, Ordering::SeqCst);
// Don't run drop on `Backend`
core::mem::forget(backend);
}
/// Call this in the interrupt handler of the hardware timer supporting the `Monotonic`
///
/// # Safety
///
/// It's always safe to call, but it must only be called from the interrupt of the
/// monotonic timer for correct operation.
pub unsafe fn on_monotonic_interrupt(&self) {
Backend::clear_compare_flag();
Backend::on_interrupt();
loop {
let mut release_at = None;
let head = self.queue.pop_if(|head| {
release_at = Some(head.release_at);
let should_pop = Backend::now().is_at_least(head.release_at);
head.was_popped.store(should_pop, Ordering::Relaxed);
should_pop
});
match (head, release_at) {
(Some(link), _) => {
link.waker.wake();
}
(None, Some(instant)) => {
Backend::enable_timer();
Backend::set_compare(instant);
if Backend::now().is_at_least(instant) {
// The time for the next instant passed while handling it,
// continue dequeueing
continue;
}
break;
}
(None, None) => {
// Queue is empty
Backend::disable_timer();
break;
}
}
}
}
/// Timeout at a specific time.
pub fn timeout_at<F: Future>(
&self,
instant: Backend::Ticks,
future: F,
) -> Timeout<'_, Backend, F> {
Timeout {
delay: Delay::<Backend> {
instant,
queue: &self.queue,
link_ptr: None,
marker: AtomicUsize::new(0),
},
future,
}
}
/// Timeout after at least a specific duration.
#[inline]
pub fn timeout_after<F: Future>(
&self,
duration: Backend::Ticks,
future: F,
) -> Timeout<'_, Backend, F> {
let now = Backend::now();
let mut timeout = now.wrapping_add(duration);
if now != timeout {
timeout = timeout.wrapping_add(Backend::Ticks::ONE_TICK);
}
// Wait for one period longer, because by definition timers have an uncertainty
// of one period, so waiting for 'at least' needs to compensate for that.
self.timeout_at(timeout, future)
}
/// Delay for at least some duration of time.
#[inline]
pub fn delay(&self, duration: Backend::Ticks) -> Delay<'_, Backend> {
let now = Backend::now();
let mut timeout = now.wrapping_add(duration);
if now != timeout {
timeout = timeout.wrapping_add(Backend::Ticks::ONE_TICK);
}
// Wait for one period longer, because by definition timers have an uncertainty
// of one period, so waiting for 'at least' needs to compensate for that.
self.delay_until(timeout)
}
/// Delay to some specific time instant.
pub fn delay_until(&self, instant: Backend::Ticks) -> Delay<'_, Backend> {
if !self.initialized.load(Ordering::Relaxed) {
panic!(
"The timer queue is not initialized with a monotonic, you need to run `initialize`"
);
}
Delay::<Backend> {
instant,
queue: &self.queue,
link_ptr: None,
marker: AtomicUsize::new(0),
}
}
}
/// Future returned by `delay` and `delay_until`.
pub struct Delay<'q, Backend: TimerQueueBackend> {
instant: Backend::Ticks,
queue: &'q LinkedList<WaitingWaker<Backend>>,
link_ptr: Option<linked_list::Link<WaitingWaker<Backend>>>,
marker: AtomicUsize,
}
impl<'q, Backend: TimerQueueBackend> Future for Delay<'q, Backend> {
type Output = ();
fn poll(self: Pin<&mut Self>, cx: &mut core::task::Context<'_>) -> Poll<Self::Output> {
// SAFETY: We ensure we never move anything out of this.
let this = unsafe { self.get_unchecked_mut() };
if Backend::now().is_at_least(this.instant) {
return Poll::Ready(());
}
// SAFETY: this is dereferenced only here and in `drop`. As the queue deletion is done only
// in `drop` we can't do this access concurrently with queue removal.
let link = &mut this.link_ptr;
if link.is_none() {
let link_ref = link.insert(Link::new(WaitingWaker {
waker: cx.waker().clone(),
release_at: this.instant,
was_popped: AtomicBool::new(false),
}));
// SAFETY(new_unchecked): The address to the link is stable as it is defined
// outside this stack frame.
// SAFETY(insert): `link_ref` lfetime comes from `link_ptr` which itself is owned by
// the `Delay` struct. The `Delay::drop` impl ensures that the link is removed from the
// queue on drop, which happens before the struct and thus `link_ptr` goes out of
// scope.
let (head_updated, addr) = unsafe { this.queue.insert(Pin::new_unchecked(link_ref)) };
this.marker.store(addr, Ordering::Relaxed);
if head_updated {
Backend::pend_interrupt()
}
}
Poll::Pending
}
}
impl<'q, Backend: TimerQueueBackend> Drop for Delay<'q, Backend> {
fn drop(&mut self) {
// SAFETY: Drop cannot be run at the same time as poll, so we can't end up
// derefencing this concurrently to the one in `poll`.
match self.link_ptr.as_ref() {
None => return,
// If it was popped from the queue there is no need to run delete
Some(link) if link.val.was_popped.load(Ordering::Relaxed) => return,
_ => {}
}
self.queue.delete(self.marker.load(Ordering::Relaxed));
}
}
/// Future returned by `timeout` and `timeout_at`.
pub struct Timeout<'q, Backend: TimerQueueBackend, F> {
delay: Delay<'q, Backend>,
future: F,
}
impl<'q, Backend: TimerQueueBackend, F: Future> Future for Timeout<'q, Backend, F> {
type Output = Result<F::Output, TimeoutError>;
fn poll(self: Pin<&mut Self>, cx: &mut core::task::Context<'_>) -> Poll<Self::Output> {
let inner = unsafe { self.get_unchecked_mut() };
{
let f = unsafe { Pin::new_unchecked(&mut inner.future) };
if let Poll::Ready(v) = f.poll(cx) {
return Poll::Ready(Ok(v));
}
}
{
let d = unsafe { Pin::new_unchecked(&mut inner.delay) };
if d.poll(cx).is_ready() {
return Poll::Ready(Err(TimeoutError));
}
}
Poll::Pending
}
}