Type Alias IC_TAR

Source
pub type IC_TAR = Reg<IC_TAR_SPEC>;
Expand description

IC_TAR (rw) register accessor: I2C Target Address Register

This register is 12 bits wide, and bits 31:12 are reserved. This register can be written to only when IC_ENABLE[0] is set to 0.

Note: If the software or application is aware that the DW_apb_i2c is not using the TAR address for the pending commands in the Tx FIFO, then it is possible to update the TAR address even while the Tx FIFO has entries (IC_STATUS[2]= 0). - It is not necessary to perform any write to this register if DW_apb_i2c is enabled as an I2C slave only.

You can read this register and get ic_tar::R. You can reset, write, write_with_zero this register using ic_tar::W. You can also modify this register. See API.

For information about available fields see ic_tar module

Aliased Type§

struct IC_TAR { /* private fields */ }

Implementations

Source§

impl<REG: Resettable + Writable> Reg<REG>

Source

pub fn reset(&self)

Writes the reset value to Writable register.

Resets the register to its initial state.

Source

pub fn write<F>(&self, f: F)
where F: FnOnce(&mut W<REG>) -> &mut W<REG>,

Writes bits to a Writable register.

You can write raw bits into a register:

periph.reg.write(|w| unsafe { w.bits(rawbits) });

or write only the fields you need:

periph.reg.write(|w| w
    .field1().bits(newfield1bits)
    .field2().set_bit()
    .field3().variant(VARIANT)
);

or an alternative way of saying the same:

periph.reg.write(|w| {
    w.field1().bits(newfield1bits);
    w.field2().set_bit();
    w.field3().variant(VARIANT)
});

In the latter case, other fields will be set to their reset value.

Source§

impl<REG: Writable> Reg<REG>

Source

pub unsafe fn write_with_zero<F>(&self, f: F)
where F: FnOnce(&mut W<REG>) -> &mut W<REG>,

Writes 0 to a Writable register.

Similar to write, but unused bits will contain 0.

§Safety

Unsafe to use with registers which don’t allow to write 0.

Source§

impl<REG: Readable + Writable> Reg<REG>

Source

pub fn modify<F>(&self, f: F)
where for<'w> F: FnOnce(&R<REG>, &'w mut W<REG>) -> &'w mut W<REG>,

Modifies the contents of the register by reading and then writing it.

E.g. to do a read-modify-write sequence to change parts of a register:

periph.reg.modify(|r, w| unsafe { w.bits(
   r.bits() | 3
) });

or

periph.reg.modify(|_, w| w
    .field1().bits(newfield1bits)
    .field2().set_bit()
    .field3().variant(VARIANT)
);

or an alternative way of saying the same:

periph.reg.modify(|_, w| {
    w.field1().bits(newfield1bits);
    w.field2().set_bit();
    w.field3().variant(VARIANT)
});

Other fields will have the value they had before the call to modify.

Source§

impl<REG: RegisterSpec> Reg<REG>

Source

pub fn as_ptr(&self) -> *mut REG::Ux

Returns the underlying memory address of register.

let reg_ptr = periph.reg.as_ptr();
Source§

impl<REG: Readable> Reg<REG>

Source

pub fn read(&self) -> R<REG>

Reads the contents of a Readable register.

You can read the raw contents of a register by using bits:

let bits = periph.reg.read().bits();

or get the content of a particular field of a register:

let reader = periph.reg.read();
let bits = reader.field1().bits();
let flag = reader.field2().bit_is_set();

Trait Implementations

Source§

impl<REG: RegisterSpec> Send for Reg<REG>
where REG::Ux: Send,