Type Alias IC_STATUS

Source
pub type IC_STATUS = Reg<IC_STATUS_SPEC>;
Expand description

IC_STATUS (r) register accessor: I2C Status Register

This is a read-only register used to indicate the current transfer status and FIFO status. The status register may be read at any time. None of the bits in this register request an interrupt.

When the I2C is disabled by writing 0 in bit 0 of the IC_ENABLE register: - Bits 1 and 2 are set to 1 - Bits 3 and 10 are set to 0 When the master or slave state machines goes to idle and ic_en=0: - Bits 5 and 6 are set to 0

You can read this register and get ic_status::R. See API.

For information about available fields see ic_status module

Aliased Type§

struct IC_STATUS { /* private fields */ }

Implementations

Source§

impl<REG: Resettable + Writable> Reg<REG>

Source

pub fn reset(&self)

Writes the reset value to Writable register.

Resets the register to its initial state.

Source

pub fn write<F>(&self, f: F)
where F: FnOnce(&mut W<REG>) -> &mut W<REG>,

Writes bits to a Writable register.

You can write raw bits into a register:

periph.reg.write(|w| unsafe { w.bits(rawbits) });

or write only the fields you need:

periph.reg.write(|w| w
    .field1().bits(newfield1bits)
    .field2().set_bit()
    .field3().variant(VARIANT)
);

or an alternative way of saying the same:

periph.reg.write(|w| {
    w.field1().bits(newfield1bits);
    w.field2().set_bit();
    w.field3().variant(VARIANT)
});

In the latter case, other fields will be set to their reset value.

Source§

impl<REG: Writable> Reg<REG>

Source

pub unsafe fn write_with_zero<F>(&self, f: F)
where F: FnOnce(&mut W<REG>) -> &mut W<REG>,

Writes 0 to a Writable register.

Similar to write, but unused bits will contain 0.

§Safety

Unsafe to use with registers which don’t allow to write 0.

Source§

impl<REG: Readable + Writable> Reg<REG>

Source

pub fn modify<F>(&self, f: F)
where for<'w> F: FnOnce(&R<REG>, &'w mut W<REG>) -> &'w mut W<REG>,

Modifies the contents of the register by reading and then writing it.

E.g. to do a read-modify-write sequence to change parts of a register:

periph.reg.modify(|r, w| unsafe { w.bits(
   r.bits() | 3
) });

or

periph.reg.modify(|_, w| w
    .field1().bits(newfield1bits)
    .field2().set_bit()
    .field3().variant(VARIANT)
);

or an alternative way of saying the same:

periph.reg.modify(|_, w| {
    w.field1().bits(newfield1bits);
    w.field2().set_bit();
    w.field3().variant(VARIANT)
});

Other fields will have the value they had before the call to modify.

Source§

impl<REG: RegisterSpec> Reg<REG>

Source

pub fn as_ptr(&self) -> *mut REG::Ux

Returns the underlying memory address of register.

let reg_ptr = periph.reg.as_ptr();
Source§

impl<REG: Readable> Reg<REG>

Source

pub fn read(&self) -> R<REG>

Reads the contents of a Readable register.

You can read the raw contents of a register by using bits:

let bits = periph.reg.read().bits();

or get the content of a particular field of a register:

let reader = periph.reg.read();
let bits = reader.field1().bits();
let flag = reader.field2().bit_is_set();

Trait Implementations

Source§

impl<REG: RegisterSpec> Send for Reg<REG>
where REG::Ux: Send,