cortex_m/peripheral/scb.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
//! System Control Block
use core::ptr;
use volatile_register::RW;
#[cfg(not(armv6m))]
use super::cpuid::CsselrCacheType;
#[cfg(not(armv6m))]
use super::CBP;
#[cfg(not(armv6m))]
use super::CPUID;
use super::SCB;
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
/// Register block
#[repr(C)]
pub struct RegisterBlock {
/// Interrupt Control and State
pub icsr: RW<u32>,
/// Vector Table Offset (not present on Cortex-M0 variants)
pub vtor: RW<u32>,
/// Application Interrupt and Reset Control
pub aircr: RW<u32>,
/// System Control
pub scr: RW<u32>,
/// Configuration and Control
pub ccr: RW<u32>,
/// System Handler Priority (word accessible only on Cortex-M0 variants)
///
/// On ARMv7-M, `shpr[0]` points to SHPR1
///
/// On ARMv6-M, `shpr[0]` points to SHPR2
#[cfg(not(armv6m))]
pub shpr: [RW<u8>; 12],
#[cfg(armv6m)]
_reserved1: u32,
/// System Handler Priority (word accessible only on Cortex-M0 variants)
///
/// On ARMv7-M, `shpr[0]` points to SHPR1
///
/// On ARMv6-M, `shpr[0]` points to SHPR2
#[cfg(armv6m)]
pub shpr: [RW<u32>; 2],
/// System Handler Control and State
pub shcsr: RW<u32>,
/// Configurable Fault Status (not present on Cortex-M0 variants)
#[cfg(not(armv6m))]
pub cfsr: RW<u32>,
#[cfg(armv6m)]
_reserved2: u32,
/// HardFault Status (not present on Cortex-M0 variants)
#[cfg(not(armv6m))]
pub hfsr: RW<u32>,
#[cfg(armv6m)]
_reserved3: u32,
/// Debug Fault Status (not present on Cortex-M0 variants)
#[cfg(not(armv6m))]
pub dfsr: RW<u32>,
#[cfg(armv6m)]
_reserved4: u32,
/// MemManage Fault Address (not present on Cortex-M0 variants)
#[cfg(not(armv6m))]
pub mmfar: RW<u32>,
#[cfg(armv6m)]
_reserved5: u32,
/// BusFault Address (not present on Cortex-M0 variants)
#[cfg(not(armv6m))]
pub bfar: RW<u32>,
#[cfg(armv6m)]
_reserved6: u32,
/// Auxiliary Fault Status (not present on Cortex-M0 variants)
#[cfg(not(armv6m))]
pub afsr: RW<u32>,
#[cfg(armv6m)]
_reserved7: u32,
_reserved8: [u32; 18],
/// Coprocessor Access Control (not present on Cortex-M0 variants)
#[cfg(not(armv6m))]
pub cpacr: RW<u32>,
#[cfg(armv6m)]
_reserved9: u32,
}
/// FPU access mode
#[cfg(has_fpu)]
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum FpuAccessMode {
/// FPU is not accessible
Disabled,
/// FPU is accessible in Privileged and User mode
Enabled,
/// FPU is accessible in Privileged mode only
Privileged,
}
#[cfg(has_fpu)]
mod fpu_consts {
pub const SCB_CPACR_FPU_MASK: u32 = 0b11_11 << 20;
pub const SCB_CPACR_FPU_ENABLE: u32 = 0b01_01 << 20;
pub const SCB_CPACR_FPU_USER: u32 = 0b10_10 << 20;
}
#[cfg(has_fpu)]
use self::fpu_consts::*;
#[cfg(has_fpu)]
impl SCB {
/// Shorthand for `set_fpu_access_mode(FpuAccessMode::Disabled)`
#[inline]
pub fn disable_fpu(&mut self) {
self.set_fpu_access_mode(FpuAccessMode::Disabled)
}
/// Shorthand for `set_fpu_access_mode(FpuAccessMode::Enabled)`
#[inline]
pub fn enable_fpu(&mut self) {
self.set_fpu_access_mode(FpuAccessMode::Enabled)
}
/// Gets FPU access mode
#[inline]
pub fn fpu_access_mode() -> FpuAccessMode {
// NOTE(unsafe) atomic read operation with no side effects
let cpacr = unsafe { (*Self::PTR).cpacr.read() };
if cpacr & SCB_CPACR_FPU_MASK == SCB_CPACR_FPU_ENABLE | SCB_CPACR_FPU_USER {
FpuAccessMode::Enabled
} else if cpacr & SCB_CPACR_FPU_MASK == SCB_CPACR_FPU_ENABLE {
FpuAccessMode::Privileged
} else {
FpuAccessMode::Disabled
}
}
/// Sets FPU access mode
///
/// *IMPORTANT* Any function that runs fully or partly with the FPU disabled must *not* take any
/// floating-point arguments or have any floating-point local variables. Because the compiler
/// might inline such a function into a caller that does have floating-point arguments or
/// variables, any such function must be also marked #[inline(never)].
#[inline]
pub fn set_fpu_access_mode(&mut self, mode: FpuAccessMode) {
let mut cpacr = self.cpacr.read() & !SCB_CPACR_FPU_MASK;
match mode {
FpuAccessMode::Disabled => (),
FpuAccessMode::Privileged => cpacr |= SCB_CPACR_FPU_ENABLE,
FpuAccessMode::Enabled => cpacr |= SCB_CPACR_FPU_ENABLE | SCB_CPACR_FPU_USER,
}
unsafe { self.cpacr.write(cpacr) }
}
}
impl SCB {
/// Returns the active exception number
#[inline]
pub fn vect_active() -> VectActive {
let icsr = unsafe { ptr::read(&(*SCB::PTR).icsr as *const _ as *const u32) };
match icsr as u8 {
0 => VectActive::ThreadMode,
2 => VectActive::Exception(Exception::NonMaskableInt),
3 => VectActive::Exception(Exception::HardFault),
#[cfg(not(armv6m))]
4 => VectActive::Exception(Exception::MemoryManagement),
#[cfg(not(armv6m))]
5 => VectActive::Exception(Exception::BusFault),
#[cfg(not(armv6m))]
6 => VectActive::Exception(Exception::UsageFault),
#[cfg(any(armv8m, native))]
7 => VectActive::Exception(Exception::SecureFault),
11 => VectActive::Exception(Exception::SVCall),
#[cfg(not(armv6m))]
12 => VectActive::Exception(Exception::DebugMonitor),
14 => VectActive::Exception(Exception::PendSV),
15 => VectActive::Exception(Exception::SysTick),
irqn => VectActive::Interrupt { irqn: irqn - 16 },
}
}
}
/// Processor core exceptions (internal interrupts)
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(feature = "std", derive(PartialOrd, Hash))]
pub enum Exception {
/// Non maskable interrupt
NonMaskableInt,
/// Hard fault interrupt
HardFault,
/// Memory management interrupt (not present on Cortex-M0 variants)
#[cfg(not(armv6m))]
MemoryManagement,
/// Bus fault interrupt (not present on Cortex-M0 variants)
#[cfg(not(armv6m))]
BusFault,
/// Usage fault interrupt (not present on Cortex-M0 variants)
#[cfg(not(armv6m))]
UsageFault,
/// Secure fault interrupt (only on ARMv8-M)
#[cfg(any(armv8m, native))]
SecureFault,
/// SV call interrupt
SVCall,
/// Debug monitor interrupt (not present on Cortex-M0 variants)
#[cfg(not(armv6m))]
DebugMonitor,
/// Pend SV interrupt
PendSV,
/// System Tick interrupt
SysTick,
}
impl Exception {
/// Returns the IRQ number of this `Exception`
///
/// The return value is always within the closed range `[-1, -14]`
#[inline]
pub fn irqn(self) -> i8 {
match self {
Exception::NonMaskableInt => -14,
Exception::HardFault => -13,
#[cfg(not(armv6m))]
Exception::MemoryManagement => -12,
#[cfg(not(armv6m))]
Exception::BusFault => -11,
#[cfg(not(armv6m))]
Exception::UsageFault => -10,
#[cfg(any(armv8m, native))]
Exception::SecureFault => -9,
Exception::SVCall => -5,
#[cfg(not(armv6m))]
Exception::DebugMonitor => -4,
Exception::PendSV => -2,
Exception::SysTick => -1,
}
}
}
/// Active exception number
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(feature = "std", derive(PartialOrd, Hash))]
pub enum VectActive {
/// Thread mode
ThreadMode,
/// Processor core exception (internal interrupts)
Exception(Exception),
/// Device specific exception (external interrupts)
Interrupt {
/// Interrupt number. This number is always within half open range `[0, 240)`
irqn: u8,
},
}
impl VectActive {
/// Converts a `byte` into `VectActive`
#[inline]
pub fn from(vect_active: u8) -> Option<Self> {
Some(match vect_active {
0 => VectActive::ThreadMode,
2 => VectActive::Exception(Exception::NonMaskableInt),
3 => VectActive::Exception(Exception::HardFault),
#[cfg(not(armv6m))]
4 => VectActive::Exception(Exception::MemoryManagement),
#[cfg(not(armv6m))]
5 => VectActive::Exception(Exception::BusFault),
#[cfg(not(armv6m))]
6 => VectActive::Exception(Exception::UsageFault),
#[cfg(any(armv8m, native))]
7 => VectActive::Exception(Exception::SecureFault),
11 => VectActive::Exception(Exception::SVCall),
#[cfg(not(armv6m))]
12 => VectActive::Exception(Exception::DebugMonitor),
14 => VectActive::Exception(Exception::PendSV),
15 => VectActive::Exception(Exception::SysTick),
irqn if irqn >= 16 => VectActive::Interrupt { irqn },
_ => return None,
})
}
}
#[cfg(not(armv6m))]
mod scb_consts {
pub const SCB_CCR_IC_MASK: u32 = 1 << 17;
pub const SCB_CCR_DC_MASK: u32 = 1 << 16;
}
#[cfg(not(armv6m))]
use self::scb_consts::*;
#[cfg(not(armv6m))]
impl SCB {
/// Enables I-cache if currently disabled.
///
/// This operation first invalidates the entire I-cache.
#[inline]
pub fn enable_icache(&mut self) {
// Don't do anything if I-cache is already enabled
if Self::icache_enabled() {
return;
}
// NOTE(unsafe): No races as all CBP registers are write-only and stateless
let mut cbp = unsafe { CBP::new() };
// Invalidate I-cache
cbp.iciallu();
// Enable I-cache
extern "C" {
// see asm-v7m.s
fn __enable_icache();
}
// NOTE(unsafe): The asm routine manages exclusive access to the SCB
// registers and applies the proper barriers; it is technically safe on
// its own, and is only `unsafe` here because it's `extern "C"`.
unsafe {
__enable_icache();
}
}
/// Disables I-cache if currently enabled.
///
/// This operation invalidates the entire I-cache after disabling.
#[inline]
pub fn disable_icache(&mut self) {
// Don't do anything if I-cache is already disabled
if !Self::icache_enabled() {
return;
}
// NOTE(unsafe): No races as all CBP registers are write-only and stateless
let mut cbp = unsafe { CBP::new() };
// Disable I-cache
// NOTE(unsafe): We have synchronised access by &mut self
unsafe { self.ccr.modify(|r| r & !SCB_CCR_IC_MASK) };
// Invalidate I-cache
cbp.iciallu();
crate::asm::dsb();
crate::asm::isb();
}
/// Returns whether the I-cache is currently enabled.
#[inline(always)]
pub fn icache_enabled() -> bool {
crate::asm::dsb();
crate::asm::isb();
// NOTE(unsafe): atomic read with no side effects
unsafe { (*Self::PTR).ccr.read() & SCB_CCR_IC_MASK == SCB_CCR_IC_MASK }
}
/// Invalidates the entire I-cache.
#[inline]
pub fn invalidate_icache(&mut self) {
// NOTE(unsafe): No races as all CBP registers are write-only and stateless
let mut cbp = unsafe { CBP::new() };
// Invalidate I-cache
cbp.iciallu();
crate::asm::dsb();
crate::asm::isb();
}
/// Enables D-cache if currently disabled.
///
/// This operation first invalidates the entire D-cache, ensuring it does
/// not contain stale values before being enabled.
#[inline]
pub fn enable_dcache(&mut self, cpuid: &mut CPUID) {
// Don't do anything if D-cache is already enabled
if Self::dcache_enabled() {
return;
}
// Invalidate anything currently in the D-cache
unsafe { self.invalidate_dcache(cpuid) };
// Now turn on the D-cache
extern "C" {
// see asm-v7m.s
fn __enable_dcache();
}
// NOTE(unsafe): The asm routine manages exclusive access to the SCB
// registers and applies the proper barriers; it is technically safe on
// its own, and is only `unsafe` here because it's `extern "C"`.
unsafe {
__enable_dcache();
}
}
/// Disables D-cache if currently enabled.
///
/// This operation subsequently cleans and invalidates the entire D-cache,
/// ensuring all contents are safely written back to main memory after disabling.
#[inline]
pub fn disable_dcache(&mut self, cpuid: &mut CPUID) {
// Don't do anything if D-cache is already disabled
if !Self::dcache_enabled() {
return;
}
// Turn off the D-cache
// NOTE(unsafe): We have synchronised access by &mut self
unsafe { self.ccr.modify(|r| r & !SCB_CCR_DC_MASK) };
// Clean and invalidate whatever was left in it
self.clean_invalidate_dcache(cpuid);
}
/// Returns whether the D-cache is currently enabled.
#[inline]
pub fn dcache_enabled() -> bool {
crate::asm::dsb();
crate::asm::isb();
// NOTE(unsafe) atomic read with no side effects
unsafe { (*Self::PTR).ccr.read() & SCB_CCR_DC_MASK == SCB_CCR_DC_MASK }
}
/// Invalidates the entire D-cache.
///
/// Note that calling this while the dcache is enabled will probably wipe out the
/// stack, depending on optimisations, therefore breaking returning to the call point.
///
/// It's used immediately before enabling the dcache, but not exported publicly.
#[inline]
unsafe fn invalidate_dcache(&mut self, cpuid: &mut CPUID) {
// NOTE(unsafe): No races as all CBP registers are write-only and stateless
let mut cbp = CBP::new();
// Read number of sets and ways
let (sets, ways) = cpuid.cache_num_sets_ways(0, CsselrCacheType::DataOrUnified);
// Invalidate entire D-cache
for set in 0..sets {
for way in 0..ways {
cbp.dcisw(set, way);
}
}
crate::asm::dsb();
crate::asm::isb();
}
/// Cleans the entire D-cache.
///
/// This function causes everything in the D-cache to be written back to main memory,
/// overwriting whatever is already there.
#[inline]
pub fn clean_dcache(&mut self, cpuid: &mut CPUID) {
// NOTE(unsafe): No races as all CBP registers are write-only and stateless
let mut cbp = unsafe { CBP::new() };
// Read number of sets and ways
let (sets, ways) = cpuid.cache_num_sets_ways(0, CsselrCacheType::DataOrUnified);
for set in 0..sets {
for way in 0..ways {
cbp.dccsw(set, way);
}
}
crate::asm::dsb();
crate::asm::isb();
}
/// Cleans and invalidates the entire D-cache.
///
/// This function causes everything in the D-cache to be written back to main memory,
/// and then marks the entire D-cache as invalid, causing future reads to first fetch
/// from main memory.
#[inline]
pub fn clean_invalidate_dcache(&mut self, cpuid: &mut CPUID) {
// NOTE(unsafe): No races as all CBP registers are write-only and stateless
let mut cbp = unsafe { CBP::new() };
// Read number of sets and ways
let (sets, ways) = cpuid.cache_num_sets_ways(0, CsselrCacheType::DataOrUnified);
for set in 0..sets {
for way in 0..ways {
cbp.dccisw(set, way);
}
}
crate::asm::dsb();
crate::asm::isb();
}
/// Invalidates D-cache by address.
///
/// * `addr`: The address to invalidate, which must be cache-line aligned.
/// * `size`: Number of bytes to invalidate, which must be a multiple of the cache line size.
///
/// Invalidates D-cache cache lines, starting from the first line containing `addr`,
/// finishing once at least `size` bytes have been invalidated.
///
/// Invalidation causes the next read access to memory to be fetched from main memory instead
/// of the cache.
///
/// # Cache Line Sizes
///
/// Cache line sizes vary by core. For all Cortex-M7 cores, the cache line size is fixed
/// to 32 bytes, which means `addr` must be 32-byte aligned and `size` must be a multiple
/// of 32. At the time of writing, no other Cortex-M cores have data caches.
///
/// If `addr` is not cache-line aligned, or `size` is not a multiple of the cache line size,
/// other data before or after the desired memory would also be invalidated, which can very
/// easily cause memory corruption and undefined behaviour.
///
/// # Safety
///
/// After invalidating, the next read of invalidated data will be from main memory. This may
/// cause recent writes to be lost, potentially including writes that initialized objects.
/// Therefore, this method may cause uninitialized memory or invalid values to be read,
/// resulting in undefined behaviour. You must ensure that main memory contains valid and
/// initialized values before invalidating.
///
/// `addr` **must** be aligned to the size of the cache lines, and `size` **must** be a
/// multiple of the cache line size, otherwise this function will invalidate other memory,
/// easily leading to memory corruption and undefined behaviour. This precondition is checked
/// in debug builds using a `debug_assert!()`, but not checked in release builds to avoid
/// a runtime-dependent `panic!()` call.
#[inline]
pub unsafe fn invalidate_dcache_by_address(&mut self, addr: usize, size: usize) {
// No-op zero sized operations
if size == 0 {
return;
}
// NOTE(unsafe): No races as all CBP registers are write-only and stateless
let mut cbp = CBP::new();
// dminline is log2(num words), so 2**dminline * 4 gives size in bytes
let dminline = CPUID::cache_dminline();
let line_size = (1 << dminline) * 4;
debug_assert!((addr & (line_size - 1)) == 0);
debug_assert!((size & (line_size - 1)) == 0);
crate::asm::dsb();
// Find number of cache lines to invalidate
let num_lines = ((size - 1) / line_size) + 1;
// Compute address of first cache line
let mask = 0xFFFF_FFFF - (line_size - 1);
let mut addr = addr & mask;
for _ in 0..num_lines {
cbp.dcimvac(addr as u32);
addr += line_size;
}
crate::asm::dsb();
crate::asm::isb();
}
/// Invalidates an object from the D-cache.
///
/// * `obj`: The object to invalidate.
///
/// Invalidates D-cache starting from the first cache line containing `obj`,
/// continuing to invalidate cache lines until all of `obj` has been invalidated.
///
/// Invalidation causes the next read access to memory to be fetched from main memory instead
/// of the cache.
///
/// # Cache Line Sizes
///
/// Cache line sizes vary by core. For all Cortex-M7 cores, the cache line size is fixed
/// to 32 bytes, which means `obj` must be 32-byte aligned, and its size must be a multiple
/// of 32 bytes. At the time of writing, no other Cortex-M cores have data caches.
///
/// If `obj` is not cache-line aligned, or its size is not a multiple of the cache line size,
/// other data before or after the desired memory would also be invalidated, which can very
/// easily cause memory corruption and undefined behaviour.
///
/// # Safety
///
/// After invalidating, `obj` will be read from main memory on next access. This may cause
/// recent writes to `obj` to be lost, potentially including the write that initialized it.
/// Therefore, this method may cause uninitialized memory or invalid values to be read,
/// resulting in undefined behaviour. You must ensure that main memory contains a valid and
/// initialized value for T before invalidating `obj`.
///
/// `obj` **must** be aligned to the size of the cache lines, and its size **must** be a
/// multiple of the cache line size, otherwise this function will invalidate other memory,
/// easily leading to memory corruption and undefined behaviour. This precondition is checked
/// in debug builds using a `debug_assert!()`, but not checked in release builds to avoid
/// a runtime-dependent `panic!()` call.
#[inline]
pub unsafe fn invalidate_dcache_by_ref<T>(&mut self, obj: &mut T) {
self.invalidate_dcache_by_address(obj as *const T as usize, core::mem::size_of::<T>());
}
/// Invalidates a slice from the D-cache.
///
/// * `slice`: The slice to invalidate.
///
/// Invalidates D-cache starting from the first cache line containing members of `slice`,
/// continuing to invalidate cache lines until all of `slice` has been invalidated.
///
/// Invalidation causes the next read access to memory to be fetched from main memory instead
/// of the cache.
///
/// # Cache Line Sizes
///
/// Cache line sizes vary by core. For all Cortex-M7 cores, the cache line size is fixed
/// to 32 bytes, which means `slice` must be 32-byte aligned, and its size must be a multiple
/// of 32 bytes. At the time of writing, no other Cortex-M cores have data caches.
///
/// If `slice` is not cache-line aligned, or its size is not a multiple of the cache line size,
/// other data before or after the desired memory would also be invalidated, which can very
/// easily cause memory corruption and undefined behaviour.
///
/// # Safety
///
/// After invalidating, `slice` will be read from main memory on next access. This may cause
/// recent writes to `slice` to be lost, potentially including the write that initialized it.
/// Therefore, this method may cause uninitialized memory or invalid values to be read,
/// resulting in undefined behaviour. You must ensure that main memory contains valid and
/// initialized values for T before invalidating `slice`.
///
/// `slice` **must** be aligned to the size of the cache lines, and its size **must** be a
/// multiple of the cache line size, otherwise this function will invalidate other memory,
/// easily leading to memory corruption and undefined behaviour. This precondition is checked
/// in debug builds using a `debug_assert!()`, but not checked in release builds to avoid
/// a runtime-dependent `panic!()` call.
#[inline]
pub unsafe fn invalidate_dcache_by_slice<T>(&mut self, slice: &mut [T]) {
self.invalidate_dcache_by_address(
slice.as_ptr() as usize,
slice.len() * core::mem::size_of::<T>(),
);
}
/// Cleans D-cache by address.
///
/// * `addr`: The address to start cleaning at.
/// * `size`: The number of bytes to clean.
///
/// Cleans D-cache cache lines, starting from the first line containing `addr`,
/// finishing once at least `size` bytes have been invalidated.
///
/// Cleaning the cache causes whatever data is present in the cache to be immediately written
/// to main memory, overwriting whatever was in main memory.
///
/// # Cache Line Sizes
///
/// Cache line sizes vary by core. For all Cortex-M7 cores, the cache line size is fixed
/// to 32 bytes, which means `addr` should generally be 32-byte aligned and `size` should be a
/// multiple of 32. At the time of writing, no other Cortex-M cores have data caches.
///
/// If `addr` is not cache-line aligned, or `size` is not a multiple of the cache line size,
/// other data before or after the desired memory will also be cleaned. From the point of view
/// of the core executing this function, memory remains consistent, so this is not unsound,
/// but is worth knowing about.
#[inline]
pub fn clean_dcache_by_address(&mut self, addr: usize, size: usize) {
// No-op zero sized operations
if size == 0 {
return;
}
// NOTE(unsafe): No races as all CBP registers are write-only and stateless
let mut cbp = unsafe { CBP::new() };
crate::asm::dsb();
let dminline = CPUID::cache_dminline();
let line_size = (1 << dminline) * 4;
let num_lines = ((size - 1) / line_size) + 1;
let mask = 0xFFFF_FFFF - (line_size - 1);
let mut addr = addr & mask;
for _ in 0..num_lines {
cbp.dccmvac(addr as u32);
addr += line_size;
}
crate::asm::dsb();
crate::asm::isb();
}
/// Cleans an object from the D-cache.
///
/// * `obj`: The object to clean.
///
/// Cleans D-cache starting from the first cache line containing `obj`,
/// continuing to clean cache lines until all of `obj` has been cleaned.
///
/// It is recommended that `obj` is both aligned to the cache line size and a multiple of
/// the cache line size long, otherwise surrounding data will also be cleaned.
///
/// Cleaning the cache causes whatever data is present in the cache to be immediately written
/// to main memory, overwriting whatever was in main memory.
#[inline]
pub fn clean_dcache_by_ref<T>(&mut self, obj: &T) {
self.clean_dcache_by_address(obj as *const T as usize, core::mem::size_of::<T>());
}
/// Cleans a slice from D-cache.
///
/// * `slice`: The slice to clean.
///
/// Cleans D-cache starting from the first cache line containing members of `slice`,
/// continuing to clean cache lines until all of `slice` has been cleaned.
///
/// It is recommended that `slice` is both aligned to the cache line size and a multiple of
/// the cache line size long, otherwise surrounding data will also be cleaned.
///
/// Cleaning the cache causes whatever data is present in the cache to be immediately written
/// to main memory, overwriting whatever was in main memory.
#[inline]
pub fn clean_dcache_by_slice<T>(&mut self, slice: &[T]) {
self.clean_dcache_by_address(
slice.as_ptr() as usize,
slice.len() * core::mem::size_of::<T>(),
);
}
/// Cleans and invalidates D-cache by address.
///
/// * `addr`: The address to clean and invalidate.
/// * `size`: The number of bytes to clean and invalidate.
///
/// Cleans and invalidates D-cache starting from the first cache line containing `addr`,
/// finishing once at least `size` bytes have been cleaned and invalidated.
///
/// It is recommended that `addr` is aligned to the cache line size and `size` is a multiple of
/// the cache line size, otherwise surrounding data will also be cleaned.
///
/// Cleaning and invalidating causes data in the D-cache to be written back to main memory,
/// and then marks that data in the D-cache as invalid, causing future reads to first fetch
/// from main memory.
#[inline]
pub fn clean_invalidate_dcache_by_address(&mut self, addr: usize, size: usize) {
// No-op zero sized operations
if size == 0 {
return;
}
// NOTE(unsafe): No races as all CBP registers are write-only and stateless
let mut cbp = unsafe { CBP::new() };
crate::asm::dsb();
// Cache lines are fixed to 32 bit on Cortex-M7 and not present in earlier Cortex-M
const LINESIZE: usize = 32;
let num_lines = ((size - 1) / LINESIZE) + 1;
let mut addr = addr & 0xFFFF_FFE0;
for _ in 0..num_lines {
cbp.dccimvac(addr as u32);
addr += LINESIZE;
}
crate::asm::dsb();
crate::asm::isb();
}
}
const SCB_SCR_SLEEPDEEP: u32 = 0x1 << 2;
impl SCB {
/// Set the SLEEPDEEP bit in the SCR register
#[inline]
pub fn set_sleepdeep(&mut self) {
unsafe {
self.scr.modify(|scr| scr | SCB_SCR_SLEEPDEEP);
}
}
/// Clear the SLEEPDEEP bit in the SCR register
#[inline]
pub fn clear_sleepdeep(&mut self) {
unsafe {
self.scr.modify(|scr| scr & !SCB_SCR_SLEEPDEEP);
}
}
}
const SCB_SCR_SLEEPONEXIT: u32 = 0x1 << 1;
impl SCB {
/// Set the SLEEPONEXIT bit in the SCR register
#[inline]
pub fn set_sleeponexit(&mut self) {
unsafe {
self.scr.modify(|scr| scr | SCB_SCR_SLEEPONEXIT);
}
}
/// Clear the SLEEPONEXIT bit in the SCR register
#[inline]
pub fn clear_sleeponexit(&mut self) {
unsafe {
self.scr.modify(|scr| scr & !SCB_SCR_SLEEPONEXIT);
}
}
}
const SCB_AIRCR_VECTKEY: u32 = 0x05FA << 16;
const SCB_AIRCR_PRIGROUP_MASK: u32 = 0x7 << 8;
const SCB_AIRCR_SYSRESETREQ: u32 = 1 << 2;
impl SCB {
/// Initiate a system reset request to reset the MCU
#[inline]
pub fn sys_reset() -> ! {
crate::asm::dsb();
unsafe {
(*Self::PTR).aircr.modify(
|r| {
SCB_AIRCR_VECTKEY | // otherwise the write is ignored
r & SCB_AIRCR_PRIGROUP_MASK | // keep priority group unchanged
SCB_AIRCR_SYSRESETREQ
}, // set the bit
)
};
crate::asm::dsb();
loop {
// wait for the reset
crate::asm::nop(); // avoid rust-lang/rust#28728
}
}
}
const SCB_ICSR_PENDSVSET: u32 = 1 << 28;
const SCB_ICSR_PENDSVCLR: u32 = 1 << 27;
const SCB_ICSR_PENDSTSET: u32 = 1 << 26;
const SCB_ICSR_PENDSTCLR: u32 = 1 << 25;
impl SCB {
/// Set the PENDSVSET bit in the ICSR register which will pend the PendSV interrupt
#[inline]
pub fn set_pendsv() {
unsafe {
(*Self::PTR).icsr.write(SCB_ICSR_PENDSVSET);
}
}
/// Check if PENDSVSET bit in the ICSR register is set meaning PendSV interrupt is pending
#[inline]
pub fn is_pendsv_pending() -> bool {
unsafe { (*Self::PTR).icsr.read() & SCB_ICSR_PENDSVSET == SCB_ICSR_PENDSVSET }
}
/// Set the PENDSVCLR bit in the ICSR register which will clear a pending PendSV interrupt
#[inline]
pub fn clear_pendsv() {
unsafe {
(*Self::PTR).icsr.write(SCB_ICSR_PENDSVCLR);
}
}
/// Set the PENDSTSET bit in the ICSR register which will pend a SysTick interrupt
#[inline]
pub fn set_pendst() {
unsafe {
(*Self::PTR).icsr.write(SCB_ICSR_PENDSTSET);
}
}
/// Check if PENDSTSET bit in the ICSR register is set meaning SysTick interrupt is pending
#[inline]
pub fn is_pendst_pending() -> bool {
unsafe { (*Self::PTR).icsr.read() & SCB_ICSR_PENDSTSET == SCB_ICSR_PENDSTSET }
}
/// Set the PENDSTCLR bit in the ICSR register which will clear a pending SysTick interrupt
#[inline]
pub fn clear_pendst() {
unsafe {
(*Self::PTR).icsr.write(SCB_ICSR_PENDSTCLR);
}
}
}
/// System handlers, exceptions with configurable priority
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
#[repr(u8)]
pub enum SystemHandler {
// NonMaskableInt, // priority is fixed
// HardFault, // priority is fixed
/// Memory management interrupt (not present on Cortex-M0 variants)
#[cfg(not(armv6m))]
MemoryManagement = 4,
/// Bus fault interrupt (not present on Cortex-M0 variants)
#[cfg(not(armv6m))]
BusFault = 5,
/// Usage fault interrupt (not present on Cortex-M0 variants)
#[cfg(not(armv6m))]
UsageFault = 6,
/// Secure fault interrupt (only on ARMv8-M)
#[cfg(any(armv8m, native))]
SecureFault = 7,
/// SV call interrupt
SVCall = 11,
/// Debug monitor interrupt (not present on Cortex-M0 variants)
#[cfg(not(armv6m))]
DebugMonitor = 12,
/// Pend SV interrupt
PendSV = 14,
/// System Tick interrupt
SysTick = 15,
}
impl SCB {
/// Returns the hardware priority of `system_handler`
///
/// *NOTE*: Hardware priority does not exactly match logical priority levels. See
/// [`NVIC.get_priority`](struct.NVIC.html#method.get_priority) for more details.
#[inline]
pub fn get_priority(system_handler: SystemHandler) -> u8 {
let index = system_handler as u8;
#[cfg(not(armv6m))]
{
// NOTE(unsafe) atomic read with no side effects
// NOTE(unsafe): Index is bounded to [4,15] by SystemHandler design.
// TODO: Review it after rust-lang/rust/issues/13926 will be fixed.
let priority_ref = unsafe { (*Self::PTR).shpr.get_unchecked(usize::from(index - 4)) };
priority_ref.read()
}
#[cfg(armv6m)]
{
// NOTE(unsafe) atomic read with no side effects
// NOTE(unsafe): Index is bounded to [11,15] by SystemHandler design.
// TODO: Review it after rust-lang/rust/issues/13926 will be fixed.
let priority_ref = unsafe {
(*Self::PTR)
.shpr
.get_unchecked(usize::from((index - 8) / 4))
};
let shpr = priority_ref.read();
let prio = (shpr >> (8 * (index % 4))) & 0x0000_00ff;
prio as u8
}
}
/// Sets the hardware priority of `system_handler` to `prio`
///
/// *NOTE*: Hardware priority does not exactly match logical priority levels. See
/// [`NVIC.get_priority`](struct.NVIC.html#method.get_priority) for more details.
///
/// On ARMv6-M, updating a system handler priority requires a read-modify-write operation. On
/// ARMv7-M, the operation is performed in a single, atomic write operation.
///
/// # Unsafety
///
/// Changing priority levels can break priority-based critical sections (see
/// [`register::basepri`](crate::register::basepri)) and compromise memory safety.
#[inline]
pub unsafe fn set_priority(&mut self, system_handler: SystemHandler, prio: u8) {
let index = system_handler as u8;
#[cfg(not(armv6m))]
{
// NOTE(unsafe): Index is bounded to [4,15] by SystemHandler design.
// TODO: Review it after rust-lang/rust/issues/13926 will be fixed.
let priority_ref = (*Self::PTR).shpr.get_unchecked(usize::from(index - 4));
priority_ref.write(prio)
}
#[cfg(armv6m)]
{
// NOTE(unsafe): Index is bounded to [11,15] by SystemHandler design.
// TODO: Review it after rust-lang/rust/issues/13926 will be fixed.
let priority_ref = (*Self::PTR)
.shpr
.get_unchecked(usize::from((index - 8) / 4));
priority_ref.modify(|value| {
let shift = 8 * (index % 4);
let mask = 0x0000_00ff << shift;
let prio = u32::from(prio) << shift;
(value & !mask) | prio
});
}
}
/// Return the bit position of the exception enable bit in the SHCSR register
#[inline]
#[cfg(not(any(armv6m, armv8m_base)))]
fn shcsr_enable_shift(exception: Exception) -> Option<u32> {
match exception {
Exception::MemoryManagement => Some(16),
Exception::BusFault => Some(17),
Exception::UsageFault => Some(18),
#[cfg(armv8m_main)]
Exception::SecureFault => Some(19),
_ => None,
}
}
/// Enable the exception
///
/// If the exception is enabled, when the exception is triggered, the exception handler will be executed instead of the
/// HardFault handler.
/// This function is only allowed on the following exceptions:
/// * `MemoryManagement`
/// * `BusFault`
/// * `UsageFault`
/// * `SecureFault` (can only be enabled from Secure state)
///
/// Calling this function with any other exception will do nothing.
#[inline]
#[cfg(not(any(armv6m, armv8m_base)))]
pub fn enable(&mut self, exception: Exception) {
if let Some(shift) = SCB::shcsr_enable_shift(exception) {
// The mutable reference to SCB makes sure that only this code is currently modifying
// the register.
unsafe { self.shcsr.modify(|value| value | (1 << shift)) }
}
}
/// Disable the exception
///
/// If the exception is disabled, when the exception is triggered, the HardFault handler will be executed instead of the
/// exception handler.
/// This function is only allowed on the following exceptions:
/// * `MemoryManagement`
/// * `BusFault`
/// * `UsageFault`
/// * `SecureFault` (can not be changed from Non-secure state)
///
/// Calling this function with any other exception will do nothing.
#[inline]
#[cfg(not(any(armv6m, armv8m_base)))]
pub fn disable(&mut self, exception: Exception) {
if let Some(shift) = SCB::shcsr_enable_shift(exception) {
// The mutable reference to SCB makes sure that only this code is currently modifying
// the register.
unsafe { self.shcsr.modify(|value| value & !(1 << shift)) }
}
}
/// Check if an exception is enabled
///
/// This function is only allowed on the following exception:
/// * `MemoryManagement`
/// * `BusFault`
/// * `UsageFault`
/// * `SecureFault` (can not be read from Non-secure state)
///
/// Calling this function with any other exception will read `false`.
#[inline]
#[cfg(not(any(armv6m, armv8m_base)))]
pub fn is_enabled(&self, exception: Exception) -> bool {
if let Some(shift) = SCB::shcsr_enable_shift(exception) {
(self.shcsr.read() & (1 << shift)) > 0
} else {
false
}
}
}