cortex_m/peripheral/nvic.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
//! Nested Vector Interrupt Controller
use volatile_register::RW;
#[cfg(not(armv6m))]
use volatile_register::{RO, WO};
use crate::interrupt::InterruptNumber;
use crate::peripheral::NVIC;
/// Register block
#[repr(C)]
pub struct RegisterBlock {
/// Interrupt Set-Enable
pub iser: [RW<u32>; 16],
_reserved0: [u32; 16],
/// Interrupt Clear-Enable
pub icer: [RW<u32>; 16],
_reserved1: [u32; 16],
/// Interrupt Set-Pending
pub ispr: [RW<u32>; 16],
_reserved2: [u32; 16],
/// Interrupt Clear-Pending
pub icpr: [RW<u32>; 16],
_reserved3: [u32; 16],
/// Interrupt Active Bit (not present on Cortex-M0 variants)
#[cfg(not(armv6m))]
pub iabr: [RO<u32>; 16],
#[cfg(armv6m)]
_reserved4: [u32; 16],
_reserved5: [u32; 48],
/// Interrupt Priority
///
/// On ARMv7-M, 124 word-sized registers are available. Each of those
/// contains of 4 interrupt priorities of 8 byte each.The architecture
/// specifically allows accessing those along byte boundaries, so they are
/// represented as 496 byte-sized registers, for convenience, and to allow
/// atomic priority updates.
///
/// On ARMv6-M, the registers must only be accessed along word boundaries,
/// so convenient byte-sized representation wouldn't work on that
/// architecture.
#[cfg(not(armv6m))]
pub ipr: [RW<u8>; 496],
/// Interrupt Priority
///
/// On ARMv7-M, 124 word-sized registers are available. Each of those
/// contains of 4 interrupt priorities of 8 byte each.The architecture
/// specifically allows accessing those along byte boundaries, so they are
/// represented as 496 byte-sized registers, for convenience, and to allow
/// atomic priority updates.
///
/// On ARMv6-M, the registers must only be accessed along word boundaries,
/// so convenient byte-sized representation wouldn't work on that
/// architecture.
#[cfg(armv6m)]
pub ipr: [RW<u32>; 8],
#[cfg(not(armv6m))]
_reserved6: [u32; 580],
/// Software Trigger Interrupt
#[cfg(not(armv6m))]
pub stir: WO<u32>,
}
impl NVIC {
/// Request an IRQ in software
///
/// Writing a value to the INTID field is the same as manually pending an interrupt by setting
/// the corresponding interrupt bit in an Interrupt Set Pending Register. This is similar to
/// [`NVIC::pend`].
///
/// This method is not available on ARMv6-M chips.
///
/// [`NVIC::pend`]: #method.pend
#[cfg(not(armv6m))]
#[inline]
pub fn request<I>(&mut self, interrupt: I)
where
I: InterruptNumber,
{
let nr = interrupt.number();
unsafe {
self.stir.write(u32::from(nr));
}
}
/// Disables `interrupt`
#[inline]
pub fn mask<I>(interrupt: I)
where
I: InterruptNumber,
{
let nr = interrupt.number();
// NOTE(unsafe) this is a write to a stateless register
unsafe { (*Self::PTR).icer[usize::from(nr / 32)].write(1 << (nr % 32)) }
}
/// Enables `interrupt`
///
/// This function is `unsafe` because it can break mask-based critical sections
#[inline]
pub unsafe fn unmask<I>(interrupt: I)
where
I: InterruptNumber,
{
let nr = interrupt.number();
// NOTE(ptr) this is a write to a stateless register
(*Self::PTR).iser[usize::from(nr / 32)].write(1 << (nr % 32))
}
/// Returns the NVIC priority of `interrupt`
///
/// *NOTE* NVIC encodes priority in the highest bits of a byte so values like `1` and `2` map
/// to the same priority. Also for NVIC priorities, a lower value (e.g. `16`) has higher
/// priority (urgency) than a larger value (e.g. `32`).
#[inline]
pub fn get_priority<I>(interrupt: I) -> u8
where
I: InterruptNumber,
{
#[cfg(not(armv6m))]
{
let nr = interrupt.number();
// NOTE(unsafe) atomic read with no side effects
unsafe { (*Self::PTR).ipr[usize::from(nr)].read() }
}
#[cfg(armv6m)]
{
// NOTE(unsafe) atomic read with no side effects
let ipr_n = unsafe { (*Self::PTR).ipr[Self::ipr_index(interrupt)].read() };
let prio = (ipr_n >> Self::ipr_shift(interrupt)) & 0x0000_00ff;
prio as u8
}
}
/// Is `interrupt` active or pre-empted and stacked
#[cfg(not(armv6m))]
#[inline]
pub fn is_active<I>(interrupt: I) -> bool
where
I: InterruptNumber,
{
let nr = interrupt.number();
let mask = 1 << (nr % 32);
// NOTE(unsafe) atomic read with no side effects
unsafe { ((*Self::PTR).iabr[usize::from(nr / 32)].read() & mask) == mask }
}
/// Checks if `interrupt` is enabled
#[inline]
pub fn is_enabled<I>(interrupt: I) -> bool
where
I: InterruptNumber,
{
let nr = interrupt.number();
let mask = 1 << (nr % 32);
// NOTE(unsafe) atomic read with no side effects
unsafe { ((*Self::PTR).iser[usize::from(nr / 32)].read() & mask) == mask }
}
/// Checks if `interrupt` is pending
#[inline]
pub fn is_pending<I>(interrupt: I) -> bool
where
I: InterruptNumber,
{
let nr = interrupt.number();
let mask = 1 << (nr % 32);
// NOTE(unsafe) atomic read with no side effects
unsafe { ((*Self::PTR).ispr[usize::from(nr / 32)].read() & mask) == mask }
}
/// Forces `interrupt` into pending state
#[inline]
pub fn pend<I>(interrupt: I)
where
I: InterruptNumber,
{
let nr = interrupt.number();
// NOTE(unsafe) atomic stateless write; ICPR doesn't store any state
unsafe { (*Self::PTR).ispr[usize::from(nr / 32)].write(1 << (nr % 32)) }
}
/// Sets the "priority" of `interrupt` to `prio`
///
/// *NOTE* See [`get_priority`](struct.NVIC.html#method.get_priority) method for an explanation
/// of how NVIC priorities work.
///
/// On ARMv6-M, updating an interrupt priority requires a read-modify-write operation. On
/// ARMv7-M, the operation is performed in a single atomic write operation.
///
/// # Unsafety
///
/// Changing priority levels can break priority-based critical sections (see
/// [`register::basepri`](crate::register::basepri)) and compromise memory safety.
#[inline]
pub unsafe fn set_priority<I>(&mut self, interrupt: I, prio: u8)
where
I: InterruptNumber,
{
#[cfg(not(armv6m))]
{
let nr = interrupt.number();
self.ipr[usize::from(nr)].write(prio)
}
#[cfg(armv6m)]
{
self.ipr[Self::ipr_index(interrupt)].modify(|value| {
let mask = 0x0000_00ff << Self::ipr_shift(interrupt);
let prio = u32::from(prio) << Self::ipr_shift(interrupt);
(value & !mask) | prio
})
}
}
/// Clears `interrupt`'s pending state
#[inline]
pub fn unpend<I>(interrupt: I)
where
I: InterruptNumber,
{
let nr = interrupt.number();
// NOTE(unsafe) atomic stateless write; ICPR doesn't store any state
unsafe { (*Self::PTR).icpr[usize::from(nr / 32)].write(1 << (nr % 32)) }
}
#[cfg(armv6m)]
#[inline]
fn ipr_index<I>(interrupt: I) -> usize
where
I: InterruptNumber,
{
usize::from(interrupt.number()) / 4
}
#[cfg(armv6m)]
#[inline]
fn ipr_shift<I>(interrupt: I) -> usize
where
I: InterruptNumber,
{
(usize::from(interrupt.number()) % 4) * 8
}
}