cortex_m/peripheral/
nvic.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
//! Nested Vector Interrupt Controller

use volatile_register::RW;
#[cfg(not(armv6m))]
use volatile_register::{RO, WO};

use crate::interrupt::InterruptNumber;
use crate::peripheral::NVIC;

/// Register block
#[repr(C)]
pub struct RegisterBlock {
    /// Interrupt Set-Enable
    pub iser: [RW<u32>; 16],

    _reserved0: [u32; 16],

    /// Interrupt Clear-Enable
    pub icer: [RW<u32>; 16],

    _reserved1: [u32; 16],

    /// Interrupt Set-Pending
    pub ispr: [RW<u32>; 16],

    _reserved2: [u32; 16],

    /// Interrupt Clear-Pending
    pub icpr: [RW<u32>; 16],

    _reserved3: [u32; 16],

    /// Interrupt Active Bit (not present on Cortex-M0 variants)
    #[cfg(not(armv6m))]
    pub iabr: [RO<u32>; 16],
    #[cfg(armv6m)]
    _reserved4: [u32; 16],

    _reserved5: [u32; 48],

    /// Interrupt Priority
    ///
    /// On ARMv7-M, 124 word-sized registers are available. Each of those
    /// contains of 4 interrupt priorities of 8 byte each.The architecture
    /// specifically allows accessing those along byte boundaries, so they are
    /// represented as 496 byte-sized registers, for convenience, and to allow
    /// atomic priority updates.
    ///
    /// On ARMv6-M, the registers must only be accessed along word boundaries,
    /// so convenient byte-sized representation wouldn't work on that
    /// architecture.
    #[cfg(not(armv6m))]
    pub ipr: [RW<u8>; 496],

    /// Interrupt Priority
    ///
    /// On ARMv7-M, 124 word-sized registers are available. Each of those
    /// contains of 4 interrupt priorities of 8 byte each.The architecture
    /// specifically allows accessing those along byte boundaries, so they are
    /// represented as 496 byte-sized registers, for convenience, and to allow
    /// atomic priority updates.
    ///
    /// On ARMv6-M, the registers must only be accessed along word boundaries,
    /// so convenient byte-sized representation wouldn't work on that
    /// architecture.
    #[cfg(armv6m)]
    pub ipr: [RW<u32>; 8],

    #[cfg(not(armv6m))]
    _reserved6: [u32; 580],

    /// Software Trigger Interrupt
    #[cfg(not(armv6m))]
    pub stir: WO<u32>,
}

impl NVIC {
    /// Request an IRQ in software
    ///
    /// Writing a value to the INTID field is the same as manually pending an interrupt by setting
    /// the corresponding interrupt bit in an Interrupt Set Pending Register. This is similar to
    /// [`NVIC::pend`].
    ///
    /// This method is not available on ARMv6-M chips.
    ///
    /// [`NVIC::pend`]: #method.pend
    #[cfg(not(armv6m))]
    #[inline]
    pub fn request<I>(&mut self, interrupt: I)
    where
        I: InterruptNumber,
    {
        let nr = interrupt.number();

        unsafe {
            self.stir.write(u32::from(nr));
        }
    }

    /// Disables `interrupt`
    #[inline]
    pub fn mask<I>(interrupt: I)
    where
        I: InterruptNumber,
    {
        let nr = interrupt.number();
        // NOTE(unsafe) this is a write to a stateless register
        unsafe { (*Self::PTR).icer[usize::from(nr / 32)].write(1 << (nr % 32)) }
    }

    /// Enables `interrupt`
    ///
    /// This function is `unsafe` because it can break mask-based critical sections
    #[inline]
    pub unsafe fn unmask<I>(interrupt: I)
    where
        I: InterruptNumber,
    {
        let nr = interrupt.number();
        // NOTE(ptr) this is a write to a stateless register
        (*Self::PTR).iser[usize::from(nr / 32)].write(1 << (nr % 32))
    }

    /// Returns the NVIC priority of `interrupt`
    ///
    /// *NOTE* NVIC encodes priority in the highest bits of a byte so values like `1` and `2` map
    /// to the same priority. Also for NVIC priorities, a lower value (e.g. `16`) has higher
    /// priority (urgency) than a larger value (e.g. `32`).
    #[inline]
    pub fn get_priority<I>(interrupt: I) -> u8
    where
        I: InterruptNumber,
    {
        #[cfg(not(armv6m))]
        {
            let nr = interrupt.number();
            // NOTE(unsafe) atomic read with no side effects
            unsafe { (*Self::PTR).ipr[usize::from(nr)].read() }
        }

        #[cfg(armv6m)]
        {
            // NOTE(unsafe) atomic read with no side effects
            let ipr_n = unsafe { (*Self::PTR).ipr[Self::ipr_index(interrupt)].read() };
            let prio = (ipr_n >> Self::ipr_shift(interrupt)) & 0x0000_00ff;
            prio as u8
        }
    }

    /// Is `interrupt` active or pre-empted and stacked
    #[cfg(not(armv6m))]
    #[inline]
    pub fn is_active<I>(interrupt: I) -> bool
    where
        I: InterruptNumber,
    {
        let nr = interrupt.number();
        let mask = 1 << (nr % 32);

        // NOTE(unsafe) atomic read with no side effects
        unsafe { ((*Self::PTR).iabr[usize::from(nr / 32)].read() & mask) == mask }
    }

    /// Checks if `interrupt` is enabled
    #[inline]
    pub fn is_enabled<I>(interrupt: I) -> bool
    where
        I: InterruptNumber,
    {
        let nr = interrupt.number();
        let mask = 1 << (nr % 32);

        // NOTE(unsafe) atomic read with no side effects
        unsafe { ((*Self::PTR).iser[usize::from(nr / 32)].read() & mask) == mask }
    }

    /// Checks if `interrupt` is pending
    #[inline]
    pub fn is_pending<I>(interrupt: I) -> bool
    where
        I: InterruptNumber,
    {
        let nr = interrupt.number();
        let mask = 1 << (nr % 32);

        // NOTE(unsafe) atomic read with no side effects
        unsafe { ((*Self::PTR).ispr[usize::from(nr / 32)].read() & mask) == mask }
    }

    /// Forces `interrupt` into pending state
    #[inline]
    pub fn pend<I>(interrupt: I)
    where
        I: InterruptNumber,
    {
        let nr = interrupt.number();

        // NOTE(unsafe) atomic stateless write; ICPR doesn't store any state
        unsafe { (*Self::PTR).ispr[usize::from(nr / 32)].write(1 << (nr % 32)) }
    }

    /// Sets the "priority" of `interrupt` to `prio`
    ///
    /// *NOTE* See [`get_priority`](struct.NVIC.html#method.get_priority) method for an explanation
    /// of how NVIC priorities work.
    ///
    /// On ARMv6-M, updating an interrupt priority requires a read-modify-write operation. On
    /// ARMv7-M, the operation is performed in a single atomic write operation.
    ///
    /// # Unsafety
    ///
    /// Changing priority levels can break priority-based critical sections (see
    /// [`register::basepri`](crate::register::basepri)) and compromise memory safety.
    #[inline]
    pub unsafe fn set_priority<I>(&mut self, interrupt: I, prio: u8)
    where
        I: InterruptNumber,
    {
        #[cfg(not(armv6m))]
        {
            let nr = interrupt.number();
            self.ipr[usize::from(nr)].write(prio)
        }

        #[cfg(armv6m)]
        {
            self.ipr[Self::ipr_index(interrupt)].modify(|value| {
                let mask = 0x0000_00ff << Self::ipr_shift(interrupt);
                let prio = u32::from(prio) << Self::ipr_shift(interrupt);

                (value & !mask) | prio
            })
        }
    }

    /// Clears `interrupt`'s pending state
    #[inline]
    pub fn unpend<I>(interrupt: I)
    where
        I: InterruptNumber,
    {
        let nr = interrupt.number();

        // NOTE(unsafe) atomic stateless write; ICPR doesn't store any state
        unsafe { (*Self::PTR).icpr[usize::from(nr / 32)].write(1 << (nr % 32)) }
    }

    #[cfg(armv6m)]
    #[inline]
    fn ipr_index<I>(interrupt: I) -> usize
    where
        I: InterruptNumber,
    {
        usize::from(interrupt.number()) / 4
    }

    #[cfg(armv6m)]
    #[inline]
    fn ipr_shift<I>(interrupt: I) -> usize
    where
        I: InterruptNumber,
    {
        (usize::from(interrupt.number()) % 4) * 8
    }
}