indexmap/set/
slice.rs

1use super::{Bucket, Entries, IndexSet, IntoIter, Iter};
2use crate::util::{slice_eq, try_simplify_range};
3
4use alloc::boxed::Box;
5use alloc::vec::Vec;
6use core::cmp::Ordering;
7use core::fmt;
8use core::hash::{Hash, Hasher};
9use core::ops::{self, Bound, Index, RangeBounds};
10
11/// A dynamically-sized slice of values in an [`IndexSet`].
12///
13/// This supports indexed operations much like a `[T]` slice,
14/// but not any hashed operations on the values.
15///
16/// Unlike `IndexSet`, `Slice` does consider the order for [`PartialEq`]
17/// and [`Eq`], and it also implements [`PartialOrd`], [`Ord`], and [`Hash`].
18#[repr(transparent)]
19pub struct Slice<T> {
20    pub(crate) entries: [Bucket<T>],
21}
22
23// SAFETY: `Slice<T>` is a transparent wrapper around `[Bucket<T>]`,
24// and reference lifetimes are bound together in function signatures.
25#[allow(unsafe_code)]
26impl<T> Slice<T> {
27    pub(super) const fn from_slice(entries: &[Bucket<T>]) -> &Self {
28        unsafe { &*(entries as *const [Bucket<T>] as *const Self) }
29    }
30
31    pub(super) fn from_boxed(entries: Box<[Bucket<T>]>) -> Box<Self> {
32        unsafe { Box::from_raw(Box::into_raw(entries) as *mut Self) }
33    }
34
35    fn into_boxed(self: Box<Self>) -> Box<[Bucket<T>]> {
36        unsafe { Box::from_raw(Box::into_raw(self) as *mut [Bucket<T>]) }
37    }
38}
39
40impl<T> Slice<T> {
41    pub(crate) fn into_entries(self: Box<Self>) -> Vec<Bucket<T>> {
42        self.into_boxed().into_vec()
43    }
44
45    /// Returns an empty slice.
46    pub const fn new<'a>() -> &'a Self {
47        Self::from_slice(&[])
48    }
49
50    /// Return the number of elements in the set slice.
51    pub const fn len(&self) -> usize {
52        self.entries.len()
53    }
54
55    /// Returns true if the set slice contains no elements.
56    pub const fn is_empty(&self) -> bool {
57        self.entries.is_empty()
58    }
59
60    /// Get a value by index.
61    ///
62    /// Valid indices are `0 <= index < self.len()`.
63    pub fn get_index(&self, index: usize) -> Option<&T> {
64        self.entries.get(index).map(Bucket::key_ref)
65    }
66
67    /// Returns a slice of values in the given range of indices.
68    ///
69    /// Valid indices are `0 <= index < self.len()`.
70    pub fn get_range<R: RangeBounds<usize>>(&self, range: R) -> Option<&Self> {
71        let range = try_simplify_range(range, self.entries.len())?;
72        self.entries.get(range).map(Self::from_slice)
73    }
74
75    /// Get the first value.
76    pub fn first(&self) -> Option<&T> {
77        self.entries.first().map(Bucket::key_ref)
78    }
79
80    /// Get the last value.
81    pub fn last(&self) -> Option<&T> {
82        self.entries.last().map(Bucket::key_ref)
83    }
84
85    /// Divides one slice into two at an index.
86    ///
87    /// ***Panics*** if `index > len`.
88    pub fn split_at(&self, index: usize) -> (&Self, &Self) {
89        let (first, second) = self.entries.split_at(index);
90        (Self::from_slice(first), Self::from_slice(second))
91    }
92
93    /// Returns the first value and the rest of the slice,
94    /// or `None` if it is empty.
95    pub fn split_first(&self) -> Option<(&T, &Self)> {
96        if let [first, rest @ ..] = &self.entries {
97            Some((&first.key, Self::from_slice(rest)))
98        } else {
99            None
100        }
101    }
102
103    /// Returns the last value and the rest of the slice,
104    /// or `None` if it is empty.
105    pub fn split_last(&self) -> Option<(&T, &Self)> {
106        if let [rest @ .., last] = &self.entries {
107            Some((&last.key, Self::from_slice(rest)))
108        } else {
109            None
110        }
111    }
112
113    /// Return an iterator over the values of the set slice.
114    pub fn iter(&self) -> Iter<'_, T> {
115        Iter::new(&self.entries)
116    }
117
118    /// Search over a sorted set for a value.
119    ///
120    /// Returns the position where that value is present, or the position where it can be inserted
121    /// to maintain the sort. See [`slice::binary_search`] for more details.
122    ///
123    /// Computes in **O(log(n))** time, which is notably less scalable than looking the value up in
124    /// the set this is a slice from using [`IndexSet::get_index_of`], but this can also position
125    /// missing values.
126    pub fn binary_search(&self, x: &T) -> Result<usize, usize>
127    where
128        T: Ord,
129    {
130        self.binary_search_by(|p| p.cmp(x))
131    }
132
133    /// Search over a sorted set with a comparator function.
134    ///
135    /// Returns the position where that value is present, or the position where it can be inserted
136    /// to maintain the sort. See [`slice::binary_search_by`] for more details.
137    ///
138    /// Computes in **O(log(n))** time.
139    #[inline]
140    pub fn binary_search_by<'a, F>(&'a self, mut f: F) -> Result<usize, usize>
141    where
142        F: FnMut(&'a T) -> Ordering,
143    {
144        self.entries.binary_search_by(move |a| f(&a.key))
145    }
146
147    /// Search over a sorted set with an extraction function.
148    ///
149    /// Returns the position where that value is present, or the position where it can be inserted
150    /// to maintain the sort. See [`slice::binary_search_by_key`] for more details.
151    ///
152    /// Computes in **O(log(n))** time.
153    #[inline]
154    pub fn binary_search_by_key<'a, B, F>(&'a self, b: &B, mut f: F) -> Result<usize, usize>
155    where
156        F: FnMut(&'a T) -> B,
157        B: Ord,
158    {
159        self.binary_search_by(|k| f(k).cmp(b))
160    }
161
162    /// Returns the index of the partition point of a sorted set according to the given predicate
163    /// (the index of the first element of the second partition).
164    ///
165    /// See [`slice::partition_point`] for more details.
166    ///
167    /// Computes in **O(log(n))** time.
168    #[must_use]
169    pub fn partition_point<P>(&self, mut pred: P) -> usize
170    where
171        P: FnMut(&T) -> bool,
172    {
173        self.entries.partition_point(move |a| pred(&a.key))
174    }
175}
176
177impl<'a, T> IntoIterator for &'a Slice<T> {
178    type IntoIter = Iter<'a, T>;
179    type Item = &'a T;
180
181    fn into_iter(self) -> Self::IntoIter {
182        self.iter()
183    }
184}
185
186impl<T> IntoIterator for Box<Slice<T>> {
187    type IntoIter = IntoIter<T>;
188    type Item = T;
189
190    fn into_iter(self) -> Self::IntoIter {
191        IntoIter::new(self.into_entries())
192    }
193}
194
195impl<T> Default for &'_ Slice<T> {
196    fn default() -> Self {
197        Slice::from_slice(&[])
198    }
199}
200
201impl<T> Default for Box<Slice<T>> {
202    fn default() -> Self {
203        Slice::from_boxed(Box::default())
204    }
205}
206
207impl<T: Clone> Clone for Box<Slice<T>> {
208    fn clone(&self) -> Self {
209        Slice::from_boxed(self.entries.to_vec().into_boxed_slice())
210    }
211}
212
213impl<T: Copy> From<&Slice<T>> for Box<Slice<T>> {
214    fn from(slice: &Slice<T>) -> Self {
215        Slice::from_boxed(Box::from(&slice.entries))
216    }
217}
218
219impl<T: fmt::Debug> fmt::Debug for Slice<T> {
220    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
221        f.debug_list().entries(self).finish()
222    }
223}
224
225impl<T, U> PartialEq<Slice<U>> for Slice<T>
226where
227    T: PartialEq<U>,
228{
229    fn eq(&self, other: &Slice<U>) -> bool {
230        slice_eq(&self.entries, &other.entries, |b1, b2| b1.key == b2.key)
231    }
232}
233
234impl<T, U> PartialEq<[U]> for Slice<T>
235where
236    T: PartialEq<U>,
237{
238    fn eq(&self, other: &[U]) -> bool {
239        slice_eq(&self.entries, other, |b, o| b.key == *o)
240    }
241}
242
243impl<T, U> PartialEq<Slice<U>> for [T]
244where
245    T: PartialEq<U>,
246{
247    fn eq(&self, other: &Slice<U>) -> bool {
248        slice_eq(self, &other.entries, |o, b| *o == b.key)
249    }
250}
251
252impl<T, U, const N: usize> PartialEq<[U; N]> for Slice<T>
253where
254    T: PartialEq<U>,
255{
256    fn eq(&self, other: &[U; N]) -> bool {
257        <Self as PartialEq<[U]>>::eq(self, other)
258    }
259}
260
261impl<T, const N: usize, U> PartialEq<Slice<U>> for [T; N]
262where
263    T: PartialEq<U>,
264{
265    fn eq(&self, other: &Slice<U>) -> bool {
266        <[T] as PartialEq<Slice<U>>>::eq(self, other)
267    }
268}
269
270impl<T: Eq> Eq for Slice<T> {}
271
272impl<T: PartialOrd> PartialOrd for Slice<T> {
273    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
274        self.iter().partial_cmp(other)
275    }
276}
277
278impl<T: Ord> Ord for Slice<T> {
279    fn cmp(&self, other: &Self) -> Ordering {
280        self.iter().cmp(other)
281    }
282}
283
284impl<T: Hash> Hash for Slice<T> {
285    fn hash<H: Hasher>(&self, state: &mut H) {
286        self.len().hash(state);
287        for value in self {
288            value.hash(state);
289        }
290    }
291}
292
293impl<T> Index<usize> for Slice<T> {
294    type Output = T;
295
296    fn index(&self, index: usize) -> &Self::Output {
297        &self.entries[index].key
298    }
299}
300
301// We can't have `impl<I: RangeBounds<usize>> Index<I>` because that conflicts with `Index<usize>`.
302// Instead, we repeat the implementations for all the core range types.
303macro_rules! impl_index {
304    ($($range:ty),*) => {$(
305        impl<T, S> Index<$range> for IndexSet<T, S> {
306            type Output = Slice<T>;
307
308            fn index(&self, range: $range) -> &Self::Output {
309                Slice::from_slice(&self.as_entries()[range])
310            }
311        }
312
313        impl<T> Index<$range> for Slice<T> {
314            type Output = Self;
315
316            fn index(&self, range: $range) -> &Self::Output {
317                Slice::from_slice(&self.entries[range])
318            }
319        }
320    )*}
321}
322impl_index!(
323    ops::Range<usize>,
324    ops::RangeFrom<usize>,
325    ops::RangeFull,
326    ops::RangeInclusive<usize>,
327    ops::RangeTo<usize>,
328    ops::RangeToInclusive<usize>,
329    (Bound<usize>, Bound<usize>)
330);
331
332#[cfg(test)]
333mod tests {
334    use super::*;
335
336    #[test]
337    fn slice_index() {
338        fn check(vec_slice: &[i32], set_slice: &Slice<i32>, sub_slice: &Slice<i32>) {
339            assert_eq!(set_slice as *const _, sub_slice as *const _);
340            itertools::assert_equal(vec_slice, set_slice);
341        }
342
343        let vec: Vec<i32> = (0..10).map(|i| i * i).collect();
344        let set: IndexSet<i32> = vec.iter().cloned().collect();
345        let slice = set.as_slice();
346
347        // RangeFull
348        check(&vec[..], &set[..], &slice[..]);
349
350        for i in 0usize..10 {
351            // Index
352            assert_eq!(vec[i], set[i]);
353            assert_eq!(vec[i], slice[i]);
354
355            // RangeFrom
356            check(&vec[i..], &set[i..], &slice[i..]);
357
358            // RangeTo
359            check(&vec[..i], &set[..i], &slice[..i]);
360
361            // RangeToInclusive
362            check(&vec[..=i], &set[..=i], &slice[..=i]);
363
364            // (Bound<usize>, Bound<usize>)
365            let bounds = (Bound::Excluded(i), Bound::Unbounded);
366            check(&vec[i + 1..], &set[bounds], &slice[bounds]);
367
368            for j in i..=10 {
369                // Range
370                check(&vec[i..j], &set[i..j], &slice[i..j]);
371            }
372
373            for j in i..10 {
374                // RangeInclusive
375                check(&vec[i..=j], &set[i..=j], &slice[i..=j]);
376            }
377        }
378    }
379}