syn/
parse.rs

1//! Parsing interface for parsing a token stream into a syntax tree node.
2//!
3//! Parsing in Syn is built on parser functions that take in a [`ParseStream`]
4//! and produce a [`Result<T>`] where `T` is some syntax tree node. Underlying
5//! these parser functions is a lower level mechanism built around the
6//! [`Cursor`] type. `Cursor` is a cheaply copyable cursor over a range of
7//! tokens in a token stream.
8//!
9//! [`Result<T>`]: Result
10//! [`Cursor`]: crate::buffer::Cursor
11//!
12//! # Example
13//!
14//! Here is a snippet of parsing code to get a feel for the style of the
15//! library. We define data structures for a subset of Rust syntax including
16//! enums (not shown) and structs, then provide implementations of the [`Parse`]
17//! trait to parse these syntax tree data structures from a token stream.
18//!
19//! Once `Parse` impls have been defined, they can be called conveniently from a
20//! procedural macro through [`parse_macro_input!`] as shown at the bottom of
21//! the snippet. If the caller provides syntactically invalid input to the
22//! procedural macro, they will receive a helpful compiler error message
23//! pointing out the exact token that triggered the failure to parse.
24//!
25//! [`parse_macro_input!`]: crate::parse_macro_input!
26//!
27//! ```
28//! # extern crate proc_macro;
29//! #
30//! use proc_macro::TokenStream;
31//! use syn::{braced, parse_macro_input, token, Field, Ident, Result, Token};
32//! use syn::parse::{Parse, ParseStream};
33//! use syn::punctuated::Punctuated;
34//!
35//! enum Item {
36//!     Struct(ItemStruct),
37//!     Enum(ItemEnum),
38//! }
39//!
40//! struct ItemStruct {
41//!     struct_token: Token![struct],
42//!     ident: Ident,
43//!     brace_token: token::Brace,
44//!     fields: Punctuated<Field, Token![,]>,
45//! }
46//! #
47//! # enum ItemEnum {}
48//!
49//! impl Parse for Item {
50//!     fn parse(input: ParseStream) -> Result<Self> {
51//!         let lookahead = input.lookahead1();
52//!         if lookahead.peek(Token![struct]) {
53//!             input.parse().map(Item::Struct)
54//!         } else if lookahead.peek(Token![enum]) {
55//!             input.parse().map(Item::Enum)
56//!         } else {
57//!             Err(lookahead.error())
58//!         }
59//!     }
60//! }
61//!
62//! impl Parse for ItemStruct {
63//!     fn parse(input: ParseStream) -> Result<Self> {
64//!         let content;
65//!         Ok(ItemStruct {
66//!             struct_token: input.parse()?,
67//!             ident: input.parse()?,
68//!             brace_token: braced!(content in input),
69//!             fields: content.parse_terminated(Field::parse_named)?,
70//!         })
71//!     }
72//! }
73//! #
74//! # impl Parse for ItemEnum {
75//! #     fn parse(input: ParseStream) -> Result<Self> {
76//! #         unimplemented!()
77//! #     }
78//! # }
79//!
80//! # const IGNORE: &str = stringify! {
81//! #[proc_macro]
82//! # };
83//! pub fn my_macro(tokens: TokenStream) -> TokenStream {
84//!     let input = parse_macro_input!(tokens as Item);
85//!
86//!     /* ... */
87//! #   "".parse().unwrap()
88//! }
89//! ```
90//!
91//! # The `syn::parse*` functions
92//!
93//! The [`syn::parse`], [`syn::parse2`], and [`syn::parse_str`] functions serve
94//! as an entry point for parsing syntax tree nodes that can be parsed in an
95//! obvious default way. These functions can return any syntax tree node that
96//! implements the [`Parse`] trait, which includes most types in Syn.
97//!
98//! [`syn::parse`]: crate::parse()
99//! [`syn::parse2`]: crate::parse2()
100//! [`syn::parse_str`]: crate::parse_str()
101//!
102//! ```
103//! use syn::Type;
104//!
105//! # fn run_parser() -> syn::Result<()> {
106//! let t: Type = syn::parse_str("std::collections::HashMap<String, Value>")?;
107//! #     Ok(())
108//! # }
109//! #
110//! # run_parser().unwrap();
111//! ```
112//!
113//! The [`parse_quote!`] macro also uses this approach.
114//!
115//! [`parse_quote!`]: crate::parse_quote!
116//!
117//! # The `Parser` trait
118//!
119//! Some types can be parsed in several ways depending on context. For example
120//! an [`Attribute`] can be either "outer" like `#[...]` or "inner" like
121//! `#![...]` and parsing the wrong one would be a bug. Similarly [`Punctuated`]
122//! may or may not allow trailing punctuation, and parsing it the wrong way
123//! would either reject valid input or accept invalid input.
124//!
125//! [`Attribute`]: crate::Attribute
126//! [`Punctuated`]: crate::punctuated
127//!
128//! The `Parse` trait is not implemented in these cases because there is no good
129//! behavior to consider the default.
130//!
131//! ```compile_fail
132//! # extern crate proc_macro;
133//! #
134//! # use syn::punctuated::Punctuated;
135//! # use syn::{PathSegment, Result, Token};
136//! #
137//! # fn f(tokens: proc_macro::TokenStream) -> Result<()> {
138//! #
139//! // Can't parse `Punctuated` without knowing whether trailing punctuation
140//! // should be allowed in this context.
141//! let path: Punctuated<PathSegment, Token![::]> = syn::parse(tokens)?;
142//! #
143//! #     Ok(())
144//! # }
145//! ```
146//!
147//! In these cases the types provide a choice of parser functions rather than a
148//! single `Parse` implementation, and those parser functions can be invoked
149//! through the [`Parser`] trait.
150//!
151//!
152//! ```
153//! # extern crate proc_macro;
154//! #
155//! use proc_macro::TokenStream;
156//! use syn::parse::Parser;
157//! use syn::punctuated::Punctuated;
158//! use syn::{Attribute, Expr, PathSegment, Result, Token};
159//!
160//! fn call_some_parser_methods(input: TokenStream) -> Result<()> {
161//!     // Parse a nonempty sequence of path segments separated by `::` punctuation
162//!     // with no trailing punctuation.
163//!     let tokens = input.clone();
164//!     let parser = Punctuated::<PathSegment, Token![::]>::parse_separated_nonempty;
165//!     let _path = parser.parse(tokens)?;
166//!
167//!     // Parse a possibly empty sequence of expressions terminated by commas with
168//!     // an optional trailing punctuation.
169//!     let tokens = input.clone();
170//!     let parser = Punctuated::<Expr, Token![,]>::parse_terminated;
171//!     let _args = parser.parse(tokens)?;
172//!
173//!     // Parse zero or more outer attributes but not inner attributes.
174//!     let tokens = input.clone();
175//!     let parser = Attribute::parse_outer;
176//!     let _attrs = parser.parse(tokens)?;
177//!
178//!     Ok(())
179//! }
180//! ```
181//!
182//! ---
183//!
184//! *This module is available only if Syn is built with the `"parsing"` feature.*
185
186#[path = "discouraged.rs"]
187pub mod discouraged;
188
189use crate::buffer::{Cursor, TokenBuffer};
190use crate::error;
191use crate::lookahead;
192#[cfg(all(
193    not(all(target_arch = "wasm32", any(target_os = "unknown", target_os = "wasi"))),
194    feature = "proc-macro"
195))]
196use crate::proc_macro;
197use crate::punctuated::Punctuated;
198use crate::token::Token;
199use proc_macro2::{self, Delimiter, Group, Literal, Punct, Span, TokenStream, TokenTree};
200use std::cell::Cell;
201use std::fmt::{self, Debug, Display};
202#[cfg(feature = "extra-traits")]
203use std::hash::{Hash, Hasher};
204use std::marker::PhantomData;
205use std::mem;
206use std::ops::Deref;
207use std::rc::Rc;
208use std::str::FromStr;
209
210pub use crate::error::{Error, Result};
211pub use crate::lookahead::{Lookahead1, Peek};
212
213/// Parsing interface implemented by all types that can be parsed in a default
214/// way from a token stream.
215///
216/// Refer to the [module documentation] for details about implementing and using
217/// the `Parse` trait.
218///
219/// [module documentation]: self
220pub trait Parse: Sized {
221    fn parse(input: ParseStream) -> Result<Self>;
222}
223
224/// Input to a Syn parser function.
225///
226/// See the methods of this type under the documentation of [`ParseBuffer`]. For
227/// an overview of parsing in Syn, refer to the [module documentation].
228///
229/// [module documentation]: self
230pub type ParseStream<'a> = &'a ParseBuffer<'a>;
231
232/// Cursor position within a buffered token stream.
233///
234/// This type is more commonly used through the type alias [`ParseStream`] which
235/// is an alias for `&ParseBuffer`.
236///
237/// `ParseStream` is the input type for all parser functions in Syn. They have
238/// the signature `fn(ParseStream) -> Result<T>`.
239///
240/// ## Calling a parser function
241///
242/// There is no public way to construct a `ParseBuffer`. Instead, if you are
243/// looking to invoke a parser function that requires `ParseStream` as input,
244/// you will need to go through one of the public parsing entry points.
245///
246/// - The [`parse_macro_input!`] macro if parsing input of a procedural macro;
247/// - One of [the `syn::parse*` functions][syn-parse]; or
248/// - A method of the [`Parser`] trait.
249///
250/// [`parse_macro_input!`]: crate::parse_macro_input!
251/// [syn-parse]: self#the-synparse-functions
252pub struct ParseBuffer<'a> {
253    scope: Span,
254    // Instead of Cell<Cursor<'a>> so that ParseBuffer<'a> is covariant in 'a.
255    // The rest of the code in this module needs to be careful that only a
256    // cursor derived from this `cell` is ever assigned to this `cell`.
257    //
258    // Cell<Cursor<'a>> cannot be covariant in 'a because then we could take a
259    // ParseBuffer<'a>, upcast to ParseBuffer<'short> for some lifetime shorter
260    // than 'a, and then assign a Cursor<'short> into the Cell.
261    //
262    // By extension, it would not be safe to expose an API that accepts a
263    // Cursor<'a> and trusts that it lives as long as the cursor currently in
264    // the cell.
265    cell: Cell<Cursor<'static>>,
266    marker: PhantomData<Cursor<'a>>,
267    unexpected: Cell<Option<Rc<Cell<Unexpected>>>>,
268}
269
270impl<'a> Drop for ParseBuffer<'a> {
271    fn drop(&mut self) {
272        if let Some(unexpected_span) = span_of_unexpected_ignoring_nones(self.cursor()) {
273            let (inner, old_span) = inner_unexpected(self);
274            if old_span.is_none() {
275                inner.set(Unexpected::Some(unexpected_span));
276            }
277        }
278    }
279}
280
281impl<'a> Display for ParseBuffer<'a> {
282    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
283        Display::fmt(&self.cursor().token_stream(), f)
284    }
285}
286
287impl<'a> Debug for ParseBuffer<'a> {
288    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
289        Debug::fmt(&self.cursor().token_stream(), f)
290    }
291}
292
293/// Cursor state associated with speculative parsing.
294///
295/// This type is the input of the closure provided to [`ParseStream::step`].
296///
297/// [`ParseStream::step`]: ParseBuffer::step
298///
299/// # Example
300///
301/// ```
302/// use proc_macro2::TokenTree;
303/// use syn::Result;
304/// use syn::parse::ParseStream;
305///
306/// // This function advances the stream past the next occurrence of `@`. If
307/// // no `@` is present in the stream, the stream position is unchanged and
308/// // an error is returned.
309/// fn skip_past_next_at(input: ParseStream) -> Result<()> {
310///     input.step(|cursor| {
311///         let mut rest = *cursor;
312///         while let Some((tt, next)) = rest.token_tree() {
313///             match &tt {
314///                 TokenTree::Punct(punct) if punct.as_char() == '@' => {
315///                     return Ok(((), next));
316///                 }
317///                 _ => rest = next,
318///             }
319///         }
320///         Err(cursor.error("no `@` was found after this point"))
321///     })
322/// }
323/// #
324/// # fn remainder_after_skipping_past_next_at(
325/// #     input: ParseStream,
326/// # ) -> Result<proc_macro2::TokenStream> {
327/// #     skip_past_next_at(input)?;
328/// #     input.parse()
329/// # }
330/// #
331/// # use syn::parse::Parser;
332/// # let remainder = remainder_after_skipping_past_next_at
333/// #     .parse_str("a @ b c")
334/// #     .unwrap();
335/// # assert_eq!(remainder.to_string(), "b c");
336/// ```
337pub struct StepCursor<'c, 'a> {
338    scope: Span,
339    // This field is covariant in 'c.
340    cursor: Cursor<'c>,
341    // This field is contravariant in 'c. Together these make StepCursor
342    // invariant in 'c. Also covariant in 'a. The user cannot cast 'c to a
343    // different lifetime but can upcast into a StepCursor with a shorter
344    // lifetime 'a.
345    //
346    // As long as we only ever construct a StepCursor for which 'c outlives 'a,
347    // this means if ever a StepCursor<'c, 'a> exists we are guaranteed that 'c
348    // outlives 'a.
349    marker: PhantomData<fn(Cursor<'c>) -> Cursor<'a>>,
350}
351
352impl<'c, 'a> Deref for StepCursor<'c, 'a> {
353    type Target = Cursor<'c>;
354
355    fn deref(&self) -> &Self::Target {
356        &self.cursor
357    }
358}
359
360impl<'c, 'a> Copy for StepCursor<'c, 'a> {}
361
362impl<'c, 'a> Clone for StepCursor<'c, 'a> {
363    fn clone(&self) -> Self {
364        *self
365    }
366}
367
368impl<'c, 'a> StepCursor<'c, 'a> {
369    /// Triggers an error at the current position of the parse stream.
370    ///
371    /// The `ParseStream::step` invocation will return this same error without
372    /// advancing the stream state.
373    pub fn error<T: Display>(self, message: T) -> Error {
374        error::new_at(self.scope, self.cursor, message)
375    }
376}
377
378pub(crate) fn advance_step_cursor<'c, 'a>(proof: StepCursor<'c, 'a>, to: Cursor<'c>) -> Cursor<'a> {
379    // Refer to the comments within the StepCursor definition. We use the
380    // fact that a StepCursor<'c, 'a> exists as proof that 'c outlives 'a.
381    // Cursor is covariant in its lifetime parameter so we can cast a
382    // Cursor<'c> to one with the shorter lifetime Cursor<'a>.
383    let _ = proof;
384    unsafe { mem::transmute::<Cursor<'c>, Cursor<'a>>(to) }
385}
386
387pub(crate) fn new_parse_buffer(
388    scope: Span,
389    cursor: Cursor,
390    unexpected: Rc<Cell<Unexpected>>,
391) -> ParseBuffer {
392    ParseBuffer {
393        scope,
394        // See comment on `cell` in the struct definition.
395        cell: Cell::new(unsafe { mem::transmute::<Cursor, Cursor<'static>>(cursor) }),
396        marker: PhantomData,
397        unexpected: Cell::new(Some(unexpected)),
398    }
399}
400
401pub(crate) enum Unexpected {
402    None,
403    Some(Span),
404    Chain(Rc<Cell<Unexpected>>),
405}
406
407impl Default for Unexpected {
408    fn default() -> Self {
409        Unexpected::None
410    }
411}
412
413impl Clone for Unexpected {
414    fn clone(&self) -> Self {
415        match self {
416            Unexpected::None => Unexpected::None,
417            Unexpected::Some(span) => Unexpected::Some(*span),
418            Unexpected::Chain(next) => Unexpected::Chain(next.clone()),
419        }
420    }
421}
422
423// We call this on Cell<Unexpected> and Cell<Option<T>> where temporarily
424// swapping in a None is cheap.
425fn cell_clone<T: Default + Clone>(cell: &Cell<T>) -> T {
426    let prev = cell.take();
427    let ret = prev.clone();
428    cell.set(prev);
429    ret
430}
431
432fn inner_unexpected(buffer: &ParseBuffer) -> (Rc<Cell<Unexpected>>, Option<Span>) {
433    let mut unexpected = get_unexpected(buffer);
434    loop {
435        match cell_clone(&unexpected) {
436            Unexpected::None => return (unexpected, None),
437            Unexpected::Some(span) => return (unexpected, Some(span)),
438            Unexpected::Chain(next) => unexpected = next,
439        }
440    }
441}
442
443pub(crate) fn get_unexpected(buffer: &ParseBuffer) -> Rc<Cell<Unexpected>> {
444    cell_clone(&buffer.unexpected).unwrap()
445}
446
447fn span_of_unexpected_ignoring_nones(mut cursor: Cursor) -> Option<Span> {
448    if cursor.eof() {
449        return None;
450    }
451    while let Some((inner, _span, rest)) = cursor.group(Delimiter::None) {
452        if let Some(unexpected) = span_of_unexpected_ignoring_nones(inner) {
453            return Some(unexpected);
454        }
455        cursor = rest;
456    }
457    if cursor.eof() {
458        None
459    } else {
460        Some(cursor.span())
461    }
462}
463
464impl<'a> ParseBuffer<'a> {
465    /// Parses a syntax tree node of type `T`, advancing the position of our
466    /// parse stream past it.
467    pub fn parse<T: Parse>(&self) -> Result<T> {
468        T::parse(self)
469    }
470
471    /// Calls the given parser function to parse a syntax tree node of type `T`
472    /// from this stream.
473    ///
474    /// # Example
475    ///
476    /// The parser below invokes [`Attribute::parse_outer`] to parse a vector of
477    /// zero or more outer attributes.
478    ///
479    /// [`Attribute::parse_outer`]: crate::Attribute::parse_outer
480    ///
481    /// ```
482    /// use syn::{Attribute, Ident, Result, Token};
483    /// use syn::parse::{Parse, ParseStream};
484    ///
485    /// // Parses a unit struct with attributes.
486    /// //
487    /// //     #[path = "s.tmpl"]
488    /// //     struct S;
489    /// struct UnitStruct {
490    ///     attrs: Vec<Attribute>,
491    ///     struct_token: Token![struct],
492    ///     name: Ident,
493    ///     semi_token: Token![;],
494    /// }
495    ///
496    /// impl Parse for UnitStruct {
497    ///     fn parse(input: ParseStream) -> Result<Self> {
498    ///         Ok(UnitStruct {
499    ///             attrs: input.call(Attribute::parse_outer)?,
500    ///             struct_token: input.parse()?,
501    ///             name: input.parse()?,
502    ///             semi_token: input.parse()?,
503    ///         })
504    ///     }
505    /// }
506    /// ```
507    pub fn call<T>(&self, function: fn(ParseStream) -> Result<T>) -> Result<T> {
508        function(self)
509    }
510
511    /// Looks at the next token in the parse stream to determine whether it
512    /// matches the requested type of token.
513    ///
514    /// Does not advance the position of the parse stream.
515    ///
516    /// # Syntax
517    ///
518    /// Note that this method does not use turbofish syntax. Pass the peek type
519    /// inside of parentheses.
520    ///
521    /// - `input.peek(Token![struct])`
522    /// - `input.peek(Token![==])`
523    /// - `input.peek(Ident)`&emsp;*(does not accept keywords)*
524    /// - `input.peek(Ident::peek_any)`
525    /// - `input.peek(Lifetime)`
526    /// - `input.peek(token::Brace)`
527    ///
528    /// # Example
529    ///
530    /// In this example we finish parsing the list of supertraits when the next
531    /// token in the input is either `where` or an opening curly brace.
532    ///
533    /// ```
534    /// use syn::{braced, token, Generics, Ident, Result, Token, TypeParamBound};
535    /// use syn::parse::{Parse, ParseStream};
536    /// use syn::punctuated::Punctuated;
537    ///
538    /// // Parses a trait definition containing no associated items.
539    /// //
540    /// //     trait Marker<'de, T>: A + B<'de> where Box<T>: Clone {}
541    /// struct MarkerTrait {
542    ///     trait_token: Token![trait],
543    ///     ident: Ident,
544    ///     generics: Generics,
545    ///     colon_token: Option<Token![:]>,
546    ///     supertraits: Punctuated<TypeParamBound, Token![+]>,
547    ///     brace_token: token::Brace,
548    /// }
549    ///
550    /// impl Parse for MarkerTrait {
551    ///     fn parse(input: ParseStream) -> Result<Self> {
552    ///         let trait_token: Token![trait] = input.parse()?;
553    ///         let ident: Ident = input.parse()?;
554    ///         let mut generics: Generics = input.parse()?;
555    ///         let colon_token: Option<Token![:]> = input.parse()?;
556    ///
557    ///         let mut supertraits = Punctuated::new();
558    ///         if colon_token.is_some() {
559    ///             loop {
560    ///                 supertraits.push_value(input.parse()?);
561    ///                 if input.peek(Token![where]) || input.peek(token::Brace) {
562    ///                     break;
563    ///                 }
564    ///                 supertraits.push_punct(input.parse()?);
565    ///             }
566    ///         }
567    ///
568    ///         generics.where_clause = input.parse()?;
569    ///         let content;
570    ///         let empty_brace_token = braced!(content in input);
571    ///
572    ///         Ok(MarkerTrait {
573    ///             trait_token,
574    ///             ident,
575    ///             generics,
576    ///             colon_token,
577    ///             supertraits,
578    ///             brace_token: empty_brace_token,
579    ///         })
580    ///     }
581    /// }
582    /// ```
583    pub fn peek<T: Peek>(&self, token: T) -> bool {
584        let _ = token;
585        T::Token::peek(self.cursor())
586    }
587
588    /// Looks at the second-next token in the parse stream.
589    ///
590    /// This is commonly useful as a way to implement contextual keywords.
591    ///
592    /// # Example
593    ///
594    /// This example needs to use `peek2` because the symbol `union` is not a
595    /// keyword in Rust. We can't use just `peek` and decide to parse a union if
596    /// the very next token is `union`, because someone is free to write a `mod
597    /// union` and a macro invocation that looks like `union::some_macro! { ...
598    /// }`. In other words `union` is a contextual keyword.
599    ///
600    /// ```
601    /// use syn::{Ident, ItemUnion, Macro, Result, Token};
602    /// use syn::parse::{Parse, ParseStream};
603    ///
604    /// // Parses either a union or a macro invocation.
605    /// enum UnionOrMacro {
606    ///     // union MaybeUninit<T> { uninit: (), value: T }
607    ///     Union(ItemUnion),
608    ///     // lazy_static! { ... }
609    ///     Macro(Macro),
610    /// }
611    ///
612    /// impl Parse for UnionOrMacro {
613    ///     fn parse(input: ParseStream) -> Result<Self> {
614    ///         if input.peek(Token![union]) && input.peek2(Ident) {
615    ///             input.parse().map(UnionOrMacro::Union)
616    ///         } else {
617    ///             input.parse().map(UnionOrMacro::Macro)
618    ///         }
619    ///     }
620    /// }
621    /// ```
622    pub fn peek2<T: Peek>(&self, token: T) -> bool {
623        fn peek2(buffer: &ParseBuffer, peek: fn(Cursor) -> bool) -> bool {
624            if let Some(group) = buffer.cursor().group(Delimiter::None) {
625                if group.0.skip().map_or(false, peek) {
626                    return true;
627                }
628            }
629            buffer.cursor().skip().map_or(false, peek)
630        }
631
632        let _ = token;
633        peek2(self, T::Token::peek)
634    }
635
636    /// Looks at the third-next token in the parse stream.
637    pub fn peek3<T: Peek>(&self, token: T) -> bool {
638        fn peek3(buffer: &ParseBuffer, peek: fn(Cursor) -> bool) -> bool {
639            if let Some(group) = buffer.cursor().group(Delimiter::None) {
640                if group.0.skip().and_then(Cursor::skip).map_or(false, peek) {
641                    return true;
642                }
643            }
644            buffer
645                .cursor()
646                .skip()
647                .and_then(Cursor::skip)
648                .map_or(false, peek)
649        }
650
651        let _ = token;
652        peek3(self, T::Token::peek)
653    }
654
655    /// Parses zero or more occurrences of `T` separated by punctuation of type
656    /// `P`, with optional trailing punctuation.
657    ///
658    /// Parsing continues until the end of this parse stream. The entire content
659    /// of this parse stream must consist of `T` and `P`.
660    ///
661    /// # Example
662    ///
663    /// ```
664    /// # use quote::quote;
665    /// #
666    /// use syn::{parenthesized, token, Ident, Result, Token, Type};
667    /// use syn::parse::{Parse, ParseStream};
668    /// use syn::punctuated::Punctuated;
669    ///
670    /// // Parse a simplified tuple struct syntax like:
671    /// //
672    /// //     struct S(A, B);
673    /// struct TupleStruct {
674    ///     struct_token: Token![struct],
675    ///     ident: Ident,
676    ///     paren_token: token::Paren,
677    ///     fields: Punctuated<Type, Token![,]>,
678    ///     semi_token: Token![;],
679    /// }
680    ///
681    /// impl Parse for TupleStruct {
682    ///     fn parse(input: ParseStream) -> Result<Self> {
683    ///         let content;
684    ///         Ok(TupleStruct {
685    ///             struct_token: input.parse()?,
686    ///             ident: input.parse()?,
687    ///             paren_token: parenthesized!(content in input),
688    ///             fields: content.parse_terminated(Type::parse)?,
689    ///             semi_token: input.parse()?,
690    ///         })
691    ///     }
692    /// }
693    /// #
694    /// # let input = quote! {
695    /// #     struct S(A, B);
696    /// # };
697    /// # syn::parse2::<TupleStruct>(input).unwrap();
698    /// ```
699    pub fn parse_terminated<T, P: Parse>(
700        &self,
701        parser: fn(ParseStream) -> Result<T>,
702    ) -> Result<Punctuated<T, P>> {
703        Punctuated::parse_terminated_with(self, parser)
704    }
705
706    /// Returns whether there are tokens remaining in this stream.
707    ///
708    /// This method returns true at the end of the content of a set of
709    /// delimiters, as well as at the very end of the complete macro input.
710    ///
711    /// # Example
712    ///
713    /// ```
714    /// use syn::{braced, token, Ident, Item, Result, Token};
715    /// use syn::parse::{Parse, ParseStream};
716    ///
717    /// // Parses a Rust `mod m { ... }` containing zero or more items.
718    /// struct Mod {
719    ///     mod_token: Token![mod],
720    ///     name: Ident,
721    ///     brace_token: token::Brace,
722    ///     items: Vec<Item>,
723    /// }
724    ///
725    /// impl Parse for Mod {
726    ///     fn parse(input: ParseStream) -> Result<Self> {
727    ///         let content;
728    ///         Ok(Mod {
729    ///             mod_token: input.parse()?,
730    ///             name: input.parse()?,
731    ///             brace_token: braced!(content in input),
732    ///             items: {
733    ///                 let mut items = Vec::new();
734    ///                 while !content.is_empty() {
735    ///                     items.push(content.parse()?);
736    ///                 }
737    ///                 items
738    ///             },
739    ///         })
740    ///     }
741    /// }
742    /// ```
743    pub fn is_empty(&self) -> bool {
744        self.cursor().eof()
745    }
746
747    /// Constructs a helper for peeking at the next token in this stream and
748    /// building an error message if it is not one of a set of expected tokens.
749    ///
750    /// # Example
751    ///
752    /// ```
753    /// use syn::{ConstParam, Ident, Lifetime, LifetimeDef, Result, Token, TypeParam};
754    /// use syn::parse::{Parse, ParseStream};
755    ///
756    /// // A generic parameter, a single one of the comma-separated elements inside
757    /// // angle brackets in:
758    /// //
759    /// //     fn f<T: Clone, 'a, 'b: 'a, const N: usize>() { ... }
760    /// //
761    /// // On invalid input, lookahead gives us a reasonable error message.
762    /// //
763    /// //     error: expected one of: identifier, lifetime, `const`
764    /// //       |
765    /// //     5 |     fn f<!Sized>() {}
766    /// //       |          ^
767    /// enum GenericParam {
768    ///     Type(TypeParam),
769    ///     Lifetime(LifetimeDef),
770    ///     Const(ConstParam),
771    /// }
772    ///
773    /// impl Parse for GenericParam {
774    ///     fn parse(input: ParseStream) -> Result<Self> {
775    ///         let lookahead = input.lookahead1();
776    ///         if lookahead.peek(Ident) {
777    ///             input.parse().map(GenericParam::Type)
778    ///         } else if lookahead.peek(Lifetime) {
779    ///             input.parse().map(GenericParam::Lifetime)
780    ///         } else if lookahead.peek(Token![const]) {
781    ///             input.parse().map(GenericParam::Const)
782    ///         } else {
783    ///             Err(lookahead.error())
784    ///         }
785    ///     }
786    /// }
787    /// ```
788    pub fn lookahead1(&self) -> Lookahead1<'a> {
789        lookahead::new(self.scope, self.cursor())
790    }
791
792    /// Forks a parse stream so that parsing tokens out of either the original
793    /// or the fork does not advance the position of the other.
794    ///
795    /// # Performance
796    ///
797    /// Forking a parse stream is a cheap fixed amount of work and does not
798    /// involve copying token buffers. Where you might hit performance problems
799    /// is if your macro ends up parsing a large amount of content more than
800    /// once.
801    ///
802    /// ```
803    /// # use syn::{Expr, Result};
804    /// # use syn::parse::ParseStream;
805    /// #
806    /// # fn bad(input: ParseStream) -> Result<Expr> {
807    /// // Do not do this.
808    /// if input.fork().parse::<Expr>().is_ok() {
809    ///     return input.parse::<Expr>();
810    /// }
811    /// # unimplemented!()
812    /// # }
813    /// ```
814    ///
815    /// As a rule, avoid parsing an unbounded amount of tokens out of a forked
816    /// parse stream. Only use a fork when the amount of work performed against
817    /// the fork is small and bounded.
818    ///
819    /// When complex speculative parsing against the forked stream is
820    /// unavoidable, use [`parse::discouraged::Speculative`] to advance the
821    /// original stream once the fork's parse is determined to have been
822    /// successful.
823    ///
824    /// For a lower level way to perform speculative parsing at the token level,
825    /// consider using [`ParseStream::step`] instead.
826    ///
827    /// [`parse::discouraged::Speculative`]: discouraged::Speculative
828    /// [`ParseStream::step`]: ParseBuffer::step
829    ///
830    /// # Example
831    ///
832    /// The parse implementation shown here parses possibly restricted `pub`
833    /// visibilities.
834    ///
835    /// - `pub`
836    /// - `pub(crate)`
837    /// - `pub(self)`
838    /// - `pub(super)`
839    /// - `pub(in some::path)`
840    ///
841    /// To handle the case of visibilities inside of tuple structs, the parser
842    /// needs to distinguish parentheses that specify visibility restrictions
843    /// from parentheses that form part of a tuple type.
844    ///
845    /// ```
846    /// # struct A;
847    /// # struct B;
848    /// # struct C;
849    /// #
850    /// struct S(pub(crate) A, pub (B, C));
851    /// ```
852    ///
853    /// In this example input the first tuple struct element of `S` has
854    /// `pub(crate)` visibility while the second tuple struct element has `pub`
855    /// visibility; the parentheses around `(B, C)` are part of the type rather
856    /// than part of a visibility restriction.
857    ///
858    /// The parser uses a forked parse stream to check the first token inside of
859    /// parentheses after the `pub` keyword. This is a small bounded amount of
860    /// work performed against the forked parse stream.
861    ///
862    /// ```
863    /// use syn::{parenthesized, token, Ident, Path, Result, Token};
864    /// use syn::ext::IdentExt;
865    /// use syn::parse::{Parse, ParseStream};
866    ///
867    /// struct PubVisibility {
868    ///     pub_token: Token![pub],
869    ///     restricted: Option<Restricted>,
870    /// }
871    ///
872    /// struct Restricted {
873    ///     paren_token: token::Paren,
874    ///     in_token: Option<Token![in]>,
875    ///     path: Path,
876    /// }
877    ///
878    /// impl Parse for PubVisibility {
879    ///     fn parse(input: ParseStream) -> Result<Self> {
880    ///         let pub_token: Token![pub] = input.parse()?;
881    ///
882    ///         if input.peek(token::Paren) {
883    ///             let ahead = input.fork();
884    ///             let mut content;
885    ///             parenthesized!(content in ahead);
886    ///
887    ///             if content.peek(Token![crate])
888    ///                 || content.peek(Token![self])
889    ///                 || content.peek(Token![super])
890    ///             {
891    ///                 return Ok(PubVisibility {
892    ///                     pub_token,
893    ///                     restricted: Some(Restricted {
894    ///                         paren_token: parenthesized!(content in input),
895    ///                         in_token: None,
896    ///                         path: Path::from(content.call(Ident::parse_any)?),
897    ///                     }),
898    ///                 });
899    ///             } else if content.peek(Token![in]) {
900    ///                 return Ok(PubVisibility {
901    ///                     pub_token,
902    ///                     restricted: Some(Restricted {
903    ///                         paren_token: parenthesized!(content in input),
904    ///                         in_token: Some(content.parse()?),
905    ///                         path: content.call(Path::parse_mod_style)?,
906    ///                     }),
907    ///                 });
908    ///             }
909    ///         }
910    ///
911    ///         Ok(PubVisibility {
912    ///             pub_token,
913    ///             restricted: None,
914    ///         })
915    ///     }
916    /// }
917    /// ```
918    pub fn fork(&self) -> Self {
919        ParseBuffer {
920            scope: self.scope,
921            cell: self.cell.clone(),
922            marker: PhantomData,
923            // Not the parent's unexpected. Nothing cares whether the clone
924            // parses all the way unless we `advance_to`.
925            unexpected: Cell::new(Some(Rc::new(Cell::new(Unexpected::None)))),
926        }
927    }
928
929    /// Triggers an error at the current position of the parse stream.
930    ///
931    /// # Example
932    ///
933    /// ```
934    /// use syn::{Expr, Result, Token};
935    /// use syn::parse::{Parse, ParseStream};
936    ///
937    /// // Some kind of loop: `while` or `for` or `loop`.
938    /// struct Loop {
939    ///     expr: Expr,
940    /// }
941    ///
942    /// impl Parse for Loop {
943    ///     fn parse(input: ParseStream) -> Result<Self> {
944    ///         if input.peek(Token![while])
945    ///             || input.peek(Token![for])
946    ///             || input.peek(Token![loop])
947    ///         {
948    ///             Ok(Loop {
949    ///                 expr: input.parse()?,
950    ///             })
951    ///         } else {
952    ///             Err(input.error("expected some kind of loop"))
953    ///         }
954    ///     }
955    /// }
956    /// ```
957    pub fn error<T: Display>(&self, message: T) -> Error {
958        error::new_at(self.scope, self.cursor(), message)
959    }
960
961    /// Speculatively parses tokens from this parse stream, advancing the
962    /// position of this stream only if parsing succeeds.
963    ///
964    /// This is a powerful low-level API used for defining the `Parse` impls of
965    /// the basic built-in token types. It is not something that will be used
966    /// widely outside of the Syn codebase.
967    ///
968    /// # Example
969    ///
970    /// ```
971    /// use proc_macro2::TokenTree;
972    /// use syn::Result;
973    /// use syn::parse::ParseStream;
974    ///
975    /// // This function advances the stream past the next occurrence of `@`. If
976    /// // no `@` is present in the stream, the stream position is unchanged and
977    /// // an error is returned.
978    /// fn skip_past_next_at(input: ParseStream) -> Result<()> {
979    ///     input.step(|cursor| {
980    ///         let mut rest = *cursor;
981    ///         while let Some((tt, next)) = rest.token_tree() {
982    ///             match &tt {
983    ///                 TokenTree::Punct(punct) if punct.as_char() == '@' => {
984    ///                     return Ok(((), next));
985    ///                 }
986    ///                 _ => rest = next,
987    ///             }
988    ///         }
989    ///         Err(cursor.error("no `@` was found after this point"))
990    ///     })
991    /// }
992    /// #
993    /// # fn remainder_after_skipping_past_next_at(
994    /// #     input: ParseStream,
995    /// # ) -> Result<proc_macro2::TokenStream> {
996    /// #     skip_past_next_at(input)?;
997    /// #     input.parse()
998    /// # }
999    /// #
1000    /// # use syn::parse::Parser;
1001    /// # let remainder = remainder_after_skipping_past_next_at
1002    /// #     .parse_str("a @ b c")
1003    /// #     .unwrap();
1004    /// # assert_eq!(remainder.to_string(), "b c");
1005    /// ```
1006    pub fn step<F, R>(&self, function: F) -> Result<R>
1007    where
1008        F: for<'c> FnOnce(StepCursor<'c, 'a>) -> Result<(R, Cursor<'c>)>,
1009    {
1010        // Since the user's function is required to work for any 'c, we know
1011        // that the Cursor<'c> they return is either derived from the input
1012        // StepCursor<'c, 'a> or from a Cursor<'static>.
1013        //
1014        // It would not be legal to write this function without the invariant
1015        // lifetime 'c in StepCursor<'c, 'a>. If this function were written only
1016        // in terms of 'a, the user could take our ParseBuffer<'a>, upcast it to
1017        // a ParseBuffer<'short> which some shorter lifetime than 'a, invoke
1018        // `step` on their ParseBuffer<'short> with a closure that returns
1019        // Cursor<'short>, and we would wrongly write that Cursor<'short> into
1020        // the Cell intended to hold Cursor<'a>.
1021        //
1022        // In some cases it may be necessary for R to contain a Cursor<'a>.
1023        // Within Syn we solve this using `advance_step_cursor` which uses the
1024        // existence of a StepCursor<'c, 'a> as proof that it is safe to cast
1025        // from Cursor<'c> to Cursor<'a>. If needed outside of Syn, it would be
1026        // safe to expose that API as a method on StepCursor.
1027        let (node, rest) = function(StepCursor {
1028            scope: self.scope,
1029            cursor: self.cell.get(),
1030            marker: PhantomData,
1031        })?;
1032        self.cell.set(rest);
1033        Ok(node)
1034    }
1035
1036    /// Returns the `Span` of the next token in the parse stream, or
1037    /// `Span::call_site()` if this parse stream has completely exhausted its
1038    /// input `TokenStream`.
1039    pub fn span(&self) -> Span {
1040        let cursor = self.cursor();
1041        if cursor.eof() {
1042            self.scope
1043        } else {
1044            crate::buffer::open_span_of_group(cursor)
1045        }
1046    }
1047
1048    /// Provides low-level access to the token representation underlying this
1049    /// parse stream.
1050    ///
1051    /// Cursors are immutable so no operations you perform against the cursor
1052    /// will affect the state of this parse stream.
1053    pub fn cursor(&self) -> Cursor<'a> {
1054        self.cell.get()
1055    }
1056
1057    fn check_unexpected(&self) -> Result<()> {
1058        match inner_unexpected(self).1 {
1059            Some(span) => Err(Error::new(span, "unexpected token")),
1060            None => Ok(()),
1061        }
1062    }
1063}
1064
1065#[cfg_attr(doc_cfg, doc(cfg(feature = "parsing")))]
1066impl<T: Parse> Parse for Box<T> {
1067    fn parse(input: ParseStream) -> Result<Self> {
1068        input.parse().map(Box::new)
1069    }
1070}
1071
1072#[cfg_attr(doc_cfg, doc(cfg(feature = "parsing")))]
1073impl<T: Parse + Token> Parse for Option<T> {
1074    fn parse(input: ParseStream) -> Result<Self> {
1075        if T::peek(input.cursor()) {
1076            Ok(Some(input.parse()?))
1077        } else {
1078            Ok(None)
1079        }
1080    }
1081}
1082
1083#[cfg_attr(doc_cfg, doc(cfg(feature = "parsing")))]
1084impl Parse for TokenStream {
1085    fn parse(input: ParseStream) -> Result<Self> {
1086        input.step(|cursor| Ok((cursor.token_stream(), Cursor::empty())))
1087    }
1088}
1089
1090#[cfg_attr(doc_cfg, doc(cfg(feature = "parsing")))]
1091impl Parse for TokenTree {
1092    fn parse(input: ParseStream) -> Result<Self> {
1093        input.step(|cursor| match cursor.token_tree() {
1094            Some((tt, rest)) => Ok((tt, rest)),
1095            None => Err(cursor.error("expected token tree")),
1096        })
1097    }
1098}
1099
1100#[cfg_attr(doc_cfg, doc(cfg(feature = "parsing")))]
1101impl Parse for Group {
1102    fn parse(input: ParseStream) -> Result<Self> {
1103        input.step(|cursor| {
1104            for delim in &[Delimiter::Parenthesis, Delimiter::Brace, Delimiter::Bracket] {
1105                if let Some((inside, span, rest)) = cursor.group(*delim) {
1106                    let mut group = Group::new(*delim, inside.token_stream());
1107                    group.set_span(span);
1108                    return Ok((group, rest));
1109                }
1110            }
1111            Err(cursor.error("expected group token"))
1112        })
1113    }
1114}
1115
1116#[cfg_attr(doc_cfg, doc(cfg(feature = "parsing")))]
1117impl Parse for Punct {
1118    fn parse(input: ParseStream) -> Result<Self> {
1119        input.step(|cursor| match cursor.punct() {
1120            Some((punct, rest)) => Ok((punct, rest)),
1121            None => Err(cursor.error("expected punctuation token")),
1122        })
1123    }
1124}
1125
1126#[cfg_attr(doc_cfg, doc(cfg(feature = "parsing")))]
1127impl Parse for Literal {
1128    fn parse(input: ParseStream) -> Result<Self> {
1129        input.step(|cursor| match cursor.literal() {
1130            Some((literal, rest)) => Ok((literal, rest)),
1131            None => Err(cursor.error("expected literal token")),
1132        })
1133    }
1134}
1135
1136/// Parser that can parse Rust tokens into a particular syntax tree node.
1137///
1138/// Refer to the [module documentation] for details about parsing in Syn.
1139///
1140/// [module documentation]: self
1141///
1142/// *This trait is available only if Syn is built with the `"parsing"` feature.*
1143pub trait Parser: Sized {
1144    type Output;
1145
1146    /// Parse a proc-macro2 token stream into the chosen syntax tree node.
1147    ///
1148    /// This function will check that the input is fully parsed. If there are
1149    /// any unparsed tokens at the end of the stream, an error is returned.
1150    fn parse2(self, tokens: TokenStream) -> Result<Self::Output>;
1151
1152    /// Parse tokens of source code into the chosen syntax tree node.
1153    ///
1154    /// This function will check that the input is fully parsed. If there are
1155    /// any unparsed tokens at the end of the stream, an error is returned.
1156    ///
1157    /// *This method is available only if Syn is built with both the `"parsing"` and
1158    /// `"proc-macro"` features.*
1159    #[cfg(all(
1160        not(all(target_arch = "wasm32", any(target_os = "unknown", target_os = "wasi"))),
1161        feature = "proc-macro"
1162    ))]
1163    fn parse(self, tokens: proc_macro::TokenStream) -> Result<Self::Output> {
1164        self.parse2(proc_macro2::TokenStream::from(tokens))
1165    }
1166
1167    /// Parse a string of Rust code into the chosen syntax tree node.
1168    ///
1169    /// This function will check that the input is fully parsed. If there are
1170    /// any unparsed tokens at the end of the string, an error is returned.
1171    ///
1172    /// # Hygiene
1173    ///
1174    /// Every span in the resulting syntax tree will be set to resolve at the
1175    /// macro call site.
1176    fn parse_str(self, s: &str) -> Result<Self::Output> {
1177        self.parse2(proc_macro2::TokenStream::from_str(s)?)
1178    }
1179
1180    // Not public API.
1181    #[doc(hidden)]
1182    #[cfg(any(feature = "full", feature = "derive"))]
1183    fn __parse_scoped(self, scope: Span, tokens: TokenStream) -> Result<Self::Output> {
1184        let _ = scope;
1185        self.parse2(tokens)
1186    }
1187
1188    // Not public API.
1189    #[doc(hidden)]
1190    #[cfg(any(feature = "full", feature = "derive"))]
1191    fn __parse_stream(self, input: ParseStream) -> Result<Self::Output> {
1192        input.parse().and_then(|tokens| self.parse2(tokens))
1193    }
1194}
1195
1196fn tokens_to_parse_buffer(tokens: &TokenBuffer) -> ParseBuffer {
1197    let scope = Span::call_site();
1198    let cursor = tokens.begin();
1199    let unexpected = Rc::new(Cell::new(Unexpected::None));
1200    new_parse_buffer(scope, cursor, unexpected)
1201}
1202
1203impl<F, T> Parser for F
1204where
1205    F: FnOnce(ParseStream) -> Result<T>,
1206{
1207    type Output = T;
1208
1209    fn parse2(self, tokens: TokenStream) -> Result<T> {
1210        let buf = TokenBuffer::new2(tokens);
1211        let state = tokens_to_parse_buffer(&buf);
1212        let node = self(&state)?;
1213        state.check_unexpected()?;
1214        if let Some(unexpected_span) = span_of_unexpected_ignoring_nones(state.cursor()) {
1215            Err(Error::new(unexpected_span, "unexpected token"))
1216        } else {
1217            Ok(node)
1218        }
1219    }
1220
1221    #[cfg(any(feature = "full", feature = "derive"))]
1222    fn __parse_scoped(self, scope: Span, tokens: TokenStream) -> Result<Self::Output> {
1223        let buf = TokenBuffer::new2(tokens);
1224        let cursor = buf.begin();
1225        let unexpected = Rc::new(Cell::new(Unexpected::None));
1226        let state = new_parse_buffer(scope, cursor, unexpected);
1227        let node = self(&state)?;
1228        state.check_unexpected()?;
1229        if let Some(unexpected_span) = span_of_unexpected_ignoring_nones(state.cursor()) {
1230            Err(Error::new(unexpected_span, "unexpected token"))
1231        } else {
1232            Ok(node)
1233        }
1234    }
1235
1236    #[cfg(any(feature = "full", feature = "derive"))]
1237    fn __parse_stream(self, input: ParseStream) -> Result<Self::Output> {
1238        self(input)
1239    }
1240}
1241
1242#[cfg(any(feature = "full", feature = "derive"))]
1243pub(crate) fn parse_scoped<F: Parser>(f: F, scope: Span, tokens: TokenStream) -> Result<F::Output> {
1244    f.__parse_scoped(scope, tokens)
1245}
1246
1247#[cfg(any(feature = "full", feature = "derive"))]
1248pub(crate) fn parse_stream<F: Parser>(f: F, input: ParseStream) -> Result<F::Output> {
1249    f.__parse_stream(input)
1250}
1251
1252/// An empty syntax tree node that consumes no tokens when parsed.
1253///
1254/// This is useful for attribute macros that want to ensure they are not
1255/// provided any attribute args.
1256///
1257/// ```
1258/// # extern crate proc_macro;
1259/// #
1260/// use proc_macro::TokenStream;
1261/// use syn::parse_macro_input;
1262/// use syn::parse::Nothing;
1263///
1264/// # const IGNORE: &str = stringify! {
1265/// #[proc_macro_attribute]
1266/// # };
1267/// pub fn my_attr(args: TokenStream, input: TokenStream) -> TokenStream {
1268///     parse_macro_input!(args as Nothing);
1269///
1270///     /* ... */
1271/// #   "".parse().unwrap()
1272/// }
1273/// ```
1274///
1275/// ```text
1276/// error: unexpected token
1277///  --> src/main.rs:3:19
1278///   |
1279/// 3 | #[my_attr(asdf)]
1280///   |           ^^^^
1281/// ```
1282pub struct Nothing;
1283
1284impl Parse for Nothing {
1285    fn parse(_input: ParseStream) -> Result<Self> {
1286        Ok(Nothing)
1287    }
1288}
1289
1290#[cfg(feature = "extra-traits")]
1291#[cfg_attr(doc_cfg, doc(cfg(feature = "extra-traits")))]
1292impl Debug for Nothing {
1293    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1294        f.write_str("Nothing")
1295    }
1296}
1297
1298#[cfg(feature = "extra-traits")]
1299#[cfg_attr(doc_cfg, doc(cfg(feature = "extra-traits")))]
1300impl Eq for Nothing {}
1301
1302#[cfg(feature = "extra-traits")]
1303#[cfg_attr(doc_cfg, doc(cfg(feature = "extra-traits")))]
1304impl PartialEq for Nothing {
1305    fn eq(&self, _other: &Self) -> bool {
1306        true
1307    }
1308}
1309
1310#[cfg(feature = "extra-traits")]
1311#[cfg_attr(doc_cfg, doc(cfg(feature = "extra-traits")))]
1312impl Hash for Nothing {
1313    fn hash<H: Hasher>(&self, _state: &mut H) {}
1314}