1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
//! Real Time For the Masses (RTFM) framework for ARM Cortex-M microcontrollers
//!
//! **IMPORTANT**: This crate is published as [`cortex-m-rtfm`] on crates.io but the name of the
//! library is `rtfm`.
//!
//! [`cortex-m-rtfm`]: https://crates.io/crates/cortex-m-rtfm
//!
//! The user level documentation can be found [here].
//!
//! [here]: https://japaric.github.io/cortex-m-rtfm/book/en/
//!
//! Don't forget to check the documentation of the [`#[app]`] attribute, which is the main component
//! of the framework.
//!
//! [`#[app]`]: ../cortex_m_rtfm_macros/attr.app.html
//!
//! # Minimum Supported Rust Version (MSRV)
//!
//! This crate is guaranteed to compile on stable Rust 1.36 (2018 edition) and up. It *might*
//! compile on older versions but that may change in any new patch release.
//!
//! # Semantic Versioning
//!
//! Like the Rust project, this crate adheres to [SemVer]: breaking changes in the API and semantics
//! require a *semver bump* (a new minor version release), with the exception of breaking changes
//! that fix soundness issues -- those are considered bug fixes and can be landed in a new patch
//! release.
//!
//! [SemVer]: https://semver.org/spec/v2.0.0.html
//!
//! # Cargo features
//!
//! - `timer-queue`. This opt-in feature enables the `schedule` API which can be used to schedule
//! tasks to run in the future. Also see [`Instant`] and [`Duration`].
//!
//! [`Instant`]: struct.Instant.html
//! [`Duration`]: struct.Duration.html
//!
//! - `nightly`. Enabling this opt-in feature makes RTFM internally use the unstable
//! `core::mem::MaybeUninit` API and unstable `const_fn` language feature to reduce static memory
//! usage, runtime overhead and initialization overhead. This feature requires a nightly compiler
//! and may stop working at any time!
#![cfg_attr(feature = "nightly", feature(maybe_uninit_extra))]
#![deny(missing_docs)]
#![deny(warnings)]
#![no_std]
#[cfg(feature = "timer-queue")]
use core::cmp::Ordering;
use core::{fmt, ops};
#[cfg(not(feature = "timer-queue"))]
use cortex_m::peripheral::SYST;
use cortex_m::{
interrupt::Nr,
peripheral::{CBP, CPUID, DCB, DWT, FPB, FPU, ITM, MPU, NVIC, SCB, TPIU},
};
pub use cortex_m_rtfm_macros::app;
#[doc(hidden)]
pub mod export;
#[doc(hidden)]
#[cfg(feature = "timer-queue")]
mod tq;
#[cfg(all(feature = "timer-queue", armv6m))]
compile_error!(
"The `timer-queue` feature is currently not supported on ARMv6-M (`thumbv6m-none-eabi`)"
);
/// Core peripherals
///
/// This is `cortex_m::Peripherals` minus the peripherals that the RTFM runtime uses
///
/// - The `NVIC` field is never present.
/// - When the `timer-queue` feature is enabled the following fields are *not* present: `DWT` and
/// `SYST`.
#[allow(non_snake_case)]
pub struct Peripherals<'a> {
/// Cache and branch predictor maintenance operations (not present on Cortex-M0 variants)
pub CBP: CBP,
/// CPUID
pub CPUID: CPUID,
/// Debug Control Block (by value if the `timer-queue` feature is disabled)
#[cfg(feature = "timer-queue")]
pub DCB: &'a mut DCB,
/// Debug Control Block (borrowed if the `timer-queue` feature is enabled)
#[cfg(not(feature = "timer-queue"))]
pub DCB: DCB,
/// Data Watchpoint and Trace unit (not present if the `timer-queue` feature is enabled)
#[cfg(not(feature = "timer-queue"))]
pub DWT: DWT,
/// Flash Patch and Breakpoint unit (not present on Cortex-M0 variants)
pub FPB: FPB,
/// Floating Point Unit (only present on `thumbv7em-none-eabihf`)
pub FPU: FPU,
/// Instrumentation Trace Macrocell (not present on Cortex-M0 variants)
pub ITM: ITM,
/// Memory Protection Unit
pub MPU: MPU,
// Nested Vector Interrupt Controller
// pub NVIC: NVIC,
/// System Control Block
pub SCB: &'a mut SCB,
/// SysTick: System Timer (not present if the `timer-queue` is enabled)
#[cfg(not(feature = "timer-queue"))]
pub SYST: SYST,
/// Trace Port Interface Unit (not present on Cortex-M0 variants)
pub TPIU: TPIU,
}
/// A measurement of a monotonically nondecreasing clock. Opaque and useful only with `Duration`
///
/// This data type is only available when the `timer-queue` feature is enabled
///
/// **NOTE:** Both `Instant` and `Duration` are only meant to be used with the `schedule` API.
///
/// We can't stop you from using `Instant.sub` to measure things so please be aware that you won't
/// be able to measure events that span longer than `(1 << 31) - 1` core clock cycles.
///
/// Also note that adding a duration equal or greater than `(1 << 31).cycles()` to an `Instant` will
/// effectively overflow it. There's a debug assertion in place to prevent this user error but it's
/// not possible to catch this error with 100% success rate because one can write `(instant +
/// duration) + duration` to bypass runtime checks.<Paste>
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
#[cfg(feature = "timer-queue")]
pub struct Instant(i32);
#[cfg(feature = "timer-queue")]
impl Instant {
/// IMPLEMENTATION DETAIL. DO NOT USE
#[doc(hidden)]
pub fn artificial(timestamp: i32) -> Self {
Instant(timestamp)
}
/// Returns an instant corresponding to "now"
pub fn now() -> Self {
Instant(DWT::get_cycle_count() as i32)
}
/// Returns the amount of time elapsed since this instant was created.
pub fn elapsed(&self) -> Duration {
Instant::now() - *self
}
/// Returns the amount of time elapsed from another instant to this one.
pub fn duration_since(&self, earlier: Instant) -> Duration {
let diff = self.0 - earlier.0;
assert!(diff >= 0, "second instant is later than self");
Duration(diff as u32)
}
}
#[cfg(feature = "timer-queue")]
impl ops::AddAssign<Duration> for Instant {
fn add_assign(&mut self, dur: Duration) {
debug_assert!(dur.0 < (1 << 31));
self.0 = self.0.wrapping_add(dur.0 as i32);
}
}
#[cfg(feature = "timer-queue")]
impl ops::Add<Duration> for Instant {
type Output = Self;
fn add(mut self, dur: Duration) -> Self {
self += dur;
self
}
}
#[cfg(feature = "timer-queue")]
impl ops::SubAssign<Duration> for Instant {
fn sub_assign(&mut self, dur: Duration) {
// XXX should this be a non-debug assertion?
debug_assert!(dur.0 < (1 << 31));
self.0 = self.0.wrapping_sub(dur.0 as i32);
}
}
#[cfg(feature = "timer-queue")]
impl ops::Sub<Duration> for Instant {
type Output = Self;
fn sub(mut self, dur: Duration) -> Self {
self -= dur;
self
}
}
#[cfg(feature = "timer-queue")]
impl ops::Sub<Instant> for Instant {
type Output = Duration;
fn sub(self, other: Instant) -> Duration {
self.duration_since(other)
}
}
#[cfg(feature = "timer-queue")]
impl Ord for Instant {
fn cmp(&self, rhs: &Self) -> Ordering {
self.0.wrapping_sub(rhs.0).cmp(&0)
}
}
#[cfg(feature = "timer-queue")]
impl PartialOrd for Instant {
fn partial_cmp(&self, rhs: &Self) -> Option<Ordering> {
Some(self.cmp(rhs))
}
}
/// A `Duration` type to represent a span of time.
///
/// This data type is only available when the `timer-queue` feature is enabled
///
/// **NOTE:** Both `Instant` and `Duration` are only meant to be used with the `schedule` API.
///
/// `Duration` has a resolution of 1 core clock cycle and an effective (half-open) range of `0..(1
/// << 31)` (end not included) *core clock cycles*.
///
/// Be aware that scheduling a (periodic) task more than `(1 << 24).cycles()` in the future will
/// incur in additional overhead proportional to the value of the `Duration`. If you need periodic
/// tasks with periods greater than `1 << 24` (e.g. with periods in seconds) you likely don't a
/// resolution of one core clock cycle so we suggest you use a hardware timer with an appropriate
/// prescaler.
#[derive(Clone, Copy, Default, Eq, Ord, PartialEq, PartialOrd)]
#[cfg(feature = "timer-queue")]
pub struct Duration(u32);
#[cfg(feature = "timer-queue")]
impl Duration {
/// Returns the total number of clock cycles contained by this `Duration`
pub fn as_cycles(&self) -> u32 {
self.0
}
}
#[cfg(feature = "timer-queue")]
impl ops::AddAssign for Duration {
fn add_assign(&mut self, dur: Duration) {
self.0 += dur.0;
}
}
#[cfg(feature = "timer-queue")]
impl ops::Add<Duration> for Duration {
type Output = Self;
fn add(self, other: Self) -> Self {
Duration(self.0 + other.0)
}
}
#[cfg(feature = "timer-queue")]
impl ops::SubAssign for Duration {
fn sub_assign(&mut self, rhs: Duration) {
self.0 -= rhs.0;
}
}
#[cfg(feature = "timer-queue")]
impl ops::Sub<Duration> for Duration {
type Output = Self;
fn sub(self, rhs: Self) -> Self {
Duration(self.0 - rhs.0)
}
}
/// Adds the `cycles` method to the `u32` type
///
/// This trait is only available when the `timer-queue` feature is enabled
#[cfg(feature = "timer-queue")]
pub trait U32Ext {
/// Converts the `u32` value into clock cycles
fn cycles(self) -> Duration;
}
#[cfg(feature = "timer-queue")]
impl U32Ext for u32 {
fn cycles(self) -> Duration {
Duration(self)
}
}
/// Memory safe access to shared resources
///
/// In RTFM, locks are implemented as critical sections that prevent other tasks from *starting*.
/// These critical sections are implemented by temporarily increasing the dynamic priority (see
/// [BASEPRI]) of the current context. Entering and leaving these critical sections is always done
/// in constant time (a few instructions).
///
/// [BASEPRI]: https://developer.arm.com/products/architecture/cpu-architecture/m-profile/docs/100701/latest/special-purpose-mask-registers
pub trait Mutex {
/// Data protected by the mutex
type T;
/// Creates a critical section and grants temporary access to the protected data
fn lock<R, F>(&mut self, f: F) -> R
where
F: FnOnce(&mut Self::T) -> R;
}
impl<'a, M> Mutex for &'a mut M
where
M: Mutex,
{
type T = M::T;
fn lock<R, F>(&mut self, f: F) -> R
where
F: FnOnce(&mut Self::T) -> R,
{
(**self).lock(f)
}
}
/// Newtype over `&'a mut T` that implements the `Mutex` trait
///
/// The `Mutex` implementation for this type is a no-op, no critical section is created
pub struct Exclusive<'a, T>(pub &'a mut T);
impl<'a, T> Mutex for Exclusive<'a, T> {
type T = T;
fn lock<R, F>(&mut self, f: F) -> R
where
F: FnOnce(&mut Self::T) -> R,
{
f(self.0)
}
}
impl<'a, T> fmt::Debug for Exclusive<'a, T>
where
T: fmt::Debug,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
(**self).fmt(f)
}
}
impl<'a, T> fmt::Display for Exclusive<'a, T>
where
T: fmt::Display,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
(**self).fmt(f)
}
}
impl<'a, T> ops::Deref for Exclusive<'a, T> {
type Target = T;
fn deref(&self) -> &T {
self.0
}
}
impl<'a, T> ops::DerefMut for Exclusive<'a, T> {
fn deref_mut(&mut self) -> &mut T {
self.0
}
}
/// Sets the given `interrupt` as pending
///
/// This is a convenience function around
/// [`NVIC::pend`](../cortex_m/peripheral/struct.NVIC.html#method.pend)
pub fn pend<I>(interrupt: I)
where
I: Nr,
{
NVIC::pend(interrupt)
}